904 resultados para 240114 Taxonomía animal
Resumo:
Infections involving Salmonella enterica subsp. enterica serovars have serious animal and human health implications; causing gastroenteritis in humans and clinical symptoms, such as diarrhoea and abortion, in livestock. In this study an optical genetic mapping technique was used to screen 20 field isolate strains from four serovars implicated in disease outbreaks. The technique was able to distinguish between the serovars and the available sequenced strains and group them in agreement with similar data from microarrays and PFGE. The optical maps revealed variation in genome maps associated with antimicrobial resistance and prophage content in S. Typhimurium, and separated the S. Newport strains into two clear geographical lineages defined by the presence of prophage sequences. The technique was also able to detect novel insertions that may have had effects on the central metabolism of some strains. Overall optical mapping allowed a greater level of differentiation of genomic content and spatial information than more traditional typing methods.
Resumo:
Policy makers in the European Union are envisioning the introduction of a community farm animal welfare label which would allow consumers to align their consumption habits with their farm animal welfare preferences. For welfare labelling to be viable the market for livestock products produced to higher welfare standards has to be sufficiently segmented with consumers having sufficiently distinct and behaviourally consistent preferences. The present study investigates consumers’ preferences for meat produced to different welfare standards using a hypothetical welfare score. Data is obtained from a contingent valuation study carried out in Britain. The ordered probit model was estimated using Bayesian inference to obtain mean willingness to pay. We find decreasing marginal WTP as animal welfare levels increase and that people’s preferences for different levels of farm animal welfare are sufficiently differentiated making the introduction of a labelling scheme in the form of a certified rating system appear feasible.
Resumo:
The influence of geographical origin, host animal and presence of the stx gene on the virulence of Escherichia coli O26 strains from ruminants was determined in this study. A clear association was found between the virulence profile and geographical origin of Shiga-toxigenic E. coli (STEC) O26 strains, with UK STEC O26 strains harbouring virtually identical profiles, whilst central European strains showed considerable heterogeneity in plasmid-encoded genes. The former group were also more likely to be non-motile and katP gene positive. Comparison of UK STEC and atypical enteropathogenic E. coli (aEPEC O26 strains showed that the presence of the stx1 gene was positively correlated with the presence of espP and katP genes and negatively associated with the presence of the yagP-yagT region and with rhamnose fermentation. In contrast to the uniform profiles of STEC O26 strains from ruminants in the UK, aEPEC O26 strains of bovine and ovine origin showed diverse profiles both within and between groups, and could not be separated into discrete groups. These results indicate that the characteristics of UK O26 strains from ruminants are distinct from those of O26 strains from ruminants and humans in other regions in central Europe. Such differences are expected to influence the zoonotic potential of this pathogen and the subsequent incidence of O26-associated human disease.
Resumo:
Climate change is expected to bring warmer temperatures, changes to rainfall patterns, and increased frequency of extreme weather. Projections of climate impacts on feed crops show that there will likely be opportunities for increased productivity as well as considerable threats to crop productivity in different parts of the world over the next 20 to 50 years. On balance, we anticipate substantial risks to the volume, volatility, and quality of animal feed supply chains from climate change. Adaptation strategies and investment informed by high quality research at the interface of crop and animal science will be needed, both to respond to climate change and to meet the increasing demand for animal products expected over the coming decades.
Resumo:
Summary 1. Agent-based models (ABMs) are widely used to predict how populations respond to changing environments. As the availability of food varies in space and time, individuals should have their own energy budgets, but there is no consensus as to how these should be modelled. Here, we use knowledge of physiological ecology to identify major issues confronting the modeller and to make recommendations about how energy budgets for use in ABMs should be constructed. 2. Our proposal is that modelled animals forage as necessary to supply their energy needs for maintenance, growth and reproduction. If there is sufficient energy intake, an animal allocates the energy obtained in the order: maintenance, growth, reproduction, energy storage, until its energy stores reach an optimal level. If there is a shortfall, the priorities for maintenance and growth/reproduction remain the same until reserves fall to a critical threshold below which all are allocated to maintenance. Rates of ingestion and allocation depend on body mass and temperature. We make suggestions for how each of these processes should be modelled mathematically. 3. Mortality rates vary with body mass and temperature according to known relationships, and these can be used to obtain estimates of background mortality rate. 4. If parameter values cannot be obtained directly, then values may provisionally be obtained by parameter borrowing, pattern-oriented modelling, artificial evolution or from allometric equations. 5. The development of ABMs incorporating individual energy budgets is essential for realistic modelling of populations affected by food availability. Such ABMs are already being used to guide conservation planning of nature reserves and shell fisheries, to assess environmental impacts of building proposals including wind farms and highways and to assess the effects on nontarget organisms of chemicals for the control of agricultural pests. Keywords: bioenergetics; energy budget; individual-based models; population dynamics.
Resumo:
Some proponents of local knowledge, such as Sillitoe (2010), have expressed second thoughts about its capacity to effect development on the ‘revolutionary’ scale once predicted. Our argument in this article follows a similar route. Recent research into the management of livestock in South Africa makes clear that rural African livestock farmers experience uncertainty in relation to the control of stock diseases. State provision of veterinary services has been significantly reduced over the past decade. Both white and African livestock owners are to a greater extent left to their own devices. In some areas of animal disease management, African livestock owners have recourse to tried-and-tested local remedies, which are largely plant-based. But especially in the critical sphere of tick control, efficacious treatments are less evident, and livestock owners struggle to find adequate solutions to high tickloads. This is particularly important in South Africa in the early twenty-first century because land reform and the freedom to purchase land in the post-apartheid context affords African stockowners opportunities to expand livestock holdings. Our research suggests that the limits of local knowledge in dealing with ticks is one of the central problems faced by African livestock owners. We judge this not only in relation to efficacy but also the perceptions of livestock owners themselves. While confidence and practice varies, and there is increasing resort of chemical acaricides we were struck by the uncertainty of livestock owners over the best strategies.
Resumo:
Proctolaelaps euserratus Karg, 1994 (Acari, Mesostigmata, Melicharidae), exclusivelly known from the Galápagos Islands till now, is newly reported from decaying matter of animal and human decomposition in various countries of Europe (Slovakia, Spain, United Kingdom). In consequence of high levels of necrophilia, the species is considered to be ecologically unusual among the other melicharids, which are primary associated with other than necrophilic habitats, such as galleries of subcorticolous beetles, bumble bee nests, flowers, etc. Proctolaelaps euserratus is reviewed, morphologically re-described (with first diagnostic characters for males), and considered as a new potential marker for later stages of decomposition, namely butyric fermentation and dry decomposition as classified in modern concepts of forensic acarology.
Resumo:
Pollination is an essential process in the sexual reproduction of seed plants and a key ecosystem service to human welfare. Animal pollinators decline as a consequence of five major global change pressures: climate change, landscape alteration, agricultural intensification, non-native species, and spread of pathogens. These pressures, which differ in their biotic or abiotic nature and their spatiotemporal scales, can interact in nonadditive ways (synergistically or antagonistically), but are rarely considered together in studies of pollinator and/or pollination decline. Management actions aimed at buffering the impacts of a particular pressure could thereby prove ineffective if another pressure is present. Here, we focus on empirical evidence of the combined effects of global change pressures on pollination, highlighting gaps in current knowledge and future research needs.
Resumo:
In a proof-of-concept study, Britton et al. (2008) demonstrated that the isotopic composition of halophytic plants can be traced in the skeletal tissues of their animal consumers. Here we apply the method to domestic herbivore remains (n = 303) from nine archaeological sites in or near the Flemish coastal plain (Belgium), where, prior to embankments, salt-marshes offered extensive pasture grounds for domestic herbivores. The sites span a period of ∼1500 years (Roman to late medieval period), during which the coastal landscape was progressively transformed from little managed wetlands to a fully embanked polder area. The bulk collagen data show variations between sites and over time, which are consistent with this historical framework and are interpreted as reflecting environmental change and differences in animal management in the coastal plain throughout the late Holocene. The study demonstrates the immense value of faunal stable isotope analysis for characterising coastal husbandry strategies beyond the means of traditional zooarchaeological techniques.