984 resultados para 1477
Resumo:
A poor representation of cloud structure in a general circulation model (GCM) is widely recognised as a potential source of error in the radiation budget. Here, we develop a new way of representing both horizontal and vertical cloud structure in a radiation scheme. This combines the ‘Tripleclouds’ parametrization, which introduces inhomogeneity by using two cloudy regions in each layer as opposed to one, each with different water content values, with ‘exponential-random’ overlap, in which clouds in adjacent layers are not overlapped maximally, but according to a vertical decorrelation scale. This paper, Part I of two, aims to parametrize the two effects such that they can be used in a GCM. To achieve this, we first review a number of studies for a globally applicable value of fractional standard deviation of water content for use in Tripleclouds. We obtain a value of 0.75 ± 0.18 from a variety of different types of observations, with no apparent dependence on cloud type or gridbox size. Then, through a second short review, we create a parametrization of decorrelation scale for use in exponential-random overlap, which varies the scale linearly with latitude from 2.9 km at the Equator to 0.4 km at the poles. When applied to radar data, both components are found to have radiative impacts capable of offsetting biases caused by cloud misrepresentation. Part II of this paper implements Tripleclouds and exponential-random overlap into a radiation code and examines both their individual and combined impacts on the global radiation budget using re-analysis data.
Resumo:
Reliably representing both horizontal cloud inhomogeneity and vertical cloud overlap is fundamentally important for the radiation budget of a general circulation model. Here, we build on the work of Part One of this two-part paper by applying a pair of parameterisations that account for horizontal inhomogeneity and vertical overlap to global re-analysis data. These are applied both together and separately in an attempt to quantify the effects of poor representation of the two components on radiation budget. Horizontal inhomogeneity is accounted for using the “Tripleclouds” scheme, which uses two regions of cloud in each layer of a gridbox as opposed to one; vertical overlap is accounted for using “exponential-random” overlap, which aligns vertically continuous cloud according to a decorrelation height. These are applied to a sample of scenes from a year of ERA-40 data. The largest radiative effect of horizontal inhomogeneity is found to be in areas of marine stratocumulus; the effect of vertical overlap is found to be fairly uniform, but with larger individual short-wave and long-wave effects in areas of deep, tropical convection. The combined effect of the two parameterisations is found to reduce the magnitude of the net top-of-atmosphere cloud radiative forcing (CRF) by 2.25 W m−2, with shifts of up to 10 W m−2 in areas of marine stratocumulus. The effects of the uncertainty in our parameterisations on radiation budget is also investigated. It is found that the uncertainty in the impact of horizontal inhomogeneity is of order ±60%, while the uncertainty in the impact of vertical overlap is much smaller. This suggests an insensitivity of the radiation budget to the exact nature of the global decorrelation height distribution derived in Part One.
Resumo:
The analysis-error variance of a 3D-FGAT assimilation is examined analytically using a simple scalar equation. It is shown that the analysis-error variance may be greater than the error variances of the inputs. The results are illustrated numerically with a scalar example and a shallow-water model.
Resumo:
In this paper, observations by a ground-based vertically pointing Doppler lidar and sonic anemometer are used to investigate the diurnal evolution of boundary-layer turbulence in cloudless, cumulus and stratocumulus conditions. When turbulence is driven primarily by surface heating, such as in cloudless and cumulus-topped boundary layers, both the vertical velocity variance and skewness follow similar profiles, on average, to previous observational studies of turbulence in convective conditions, with a peak skewness of around 0.8 in the upper third of the mixed layer. When the turbulence is driven primarily by cloud-top radiative cooling, such as in the presence of nocturnal stratocumulus, it is found that the skewness is inverted in both sign and height: its minimum value of around −0.9 occurs in the lower third of the mixed layer. The profile of variance is consistent with a cloud-top cooling rate of around 30Wm−2. This is also consistent with the evolution of the thermodynamic profile and the rate of growth of the mixed layer into the stable nocturnal boundary layer from above. In conditions where surface heating occurs simultaneously with cloud-top cooling, the skewness is found to be useful for diagnosing the source of the turbulence, suggesting that long-term Doppler lidar observations would be valuable for evaluating boundary-layer parametrization schemes. Copyright c 2009 Royal Meteorological Society
Resumo:
Cloud radar and lidar can be used to evaluate the skill of numerical weather prediction models in forecasting the timing and placement of clouds, but care must be taken in choosing the appropriate metric of skill to use due to the non- Gaussian nature of cloud-fraction distributions. We compare the properties of a number of different verification measures and conclude that of existing measures the Log of Odds Ratio is the most suitable for cloud fraction. We also propose a new measure, the Symmetric Extreme Dependency Score, which has very attractive properties, being equitable (for large samples), difficult to hedge and independent of the frequency of occurrence of the quantity being verified. We then use data from five European ground-based sites and seven forecast models, processed using the ‘Cloudnet’ analysis system, to investigate the dependence of forecast skill on cloud fraction threshold (for binary skill scores), height, horizontal scale and (for the Met Office and German Weather Service models) forecast lead time. The models are found to be least skillful at predicting the timing and placement of boundary-layer clouds and most skilful at predicting mid-level clouds, although in the latter case they tend to underestimate mean cloud fraction when cloud is present. It is found that skill decreases approximately inverse-exponentially with forecast lead time, enabling a forecast ‘half-life’ to be estimated. When considering the skill of instantaneous model snapshots, we find typical values ranging between 2.5 and 4.5 days. Copyright c 2009 Royal Meteorological Society
Resumo:
We present an extensive thermodynamic analysis of a hysteresis experiment performed on a simplified yet Earth-like climate model. We slowly vary the solar constant by 20% around the present value and detect that for a large range of values of the solar constant the realization of snowball or of regular climate conditions depends on the history of the system. Using recent results on the global climate thermodynamics, we show that the two regimes feature radically different properties. The efficiency of the climate machine monotonically increases with decreasing solar constant in present climate conditions, whereas the opposite takes place in snowball conditions. Instead, entropy production is monotonically increasing with the solar constant in both branches of climate conditions, and its value is about four times larger in the warm branch than in the corresponding cold state. Finally, the degree of irreversibility of the system, measured as the fraction of excess entropy production due to irreversible heat transport processes, is much higher in the warm climate conditions, with an explosive growth in the upper range of the considered values of solar constants. Whereas in the cold climate regime a dominating role is played by changes in the meridional albedo contrast, in the warm climate regime changes in the intensity of latent heat fluxes are crucial for determining the observed properties. This substantiates the importance of addressing correctly the variations of the hydrological cycle in a changing climate. An interpretation of the climate transitions at the tipping points based upon macro-scale thermodynamic properties is also proposed. Our results support the adoption of a new generation of diagnostic tools based on the second law of thermodynamics for auditing climate models and outline a set of parametrizations to be used in conceptual and intermediate-complexity models or for the reconstruction of the past climate conditions. Copyright © 2010 Royal Meteorological Society
Resumo:
The Group on Earth Observations System of Systems, GEOSS, is a co-ordinated initiative by many nations to address the needs for earth-system information expressed by the 2002 World Summit on Sustainable Development. We discuss the role of earth-system modelling and data assimilation in transforming earth-system observations into the predictive and status-assessment products required by GEOSS, across many areas of socio-economic interest. First we review recent gains in the predictive skill of operational global earth-system models, on time-scales of days to several seasons. We then discuss recent work to develop from the global predictions a diverse set of end-user applications which can meet GEOSS requirements for information of socio-economic benefit; examples include forecasts of coastal storm surges, floods in large river basins, seasonal crop yield forecasts and seasonal lead-time alerts for malaria epidemics. We note ongoing efforts to extend operational earth-system modelling and assimilation capabilities to atmospheric composition, in support of improved services for air-quality forecasts and for treaty assessment. We next sketch likely GEOSS observational requirements in the coming decades. In concluding, we reflect on the cost of earth observations relative to the modest cost of transforming the observations into information of socio-economic value.
Resumo:
Several previous studies have attempted to assess the sublimation depth-scales of ice particles from clouds into clear air. Upon examining the sublimation depth-scales in the Met Office Unified Model (MetUM), it was found that the MetUM has evaporation depth-scales 2–3 times larger than radar observations. Similar results can be seen in the European Centre for Medium-Range Weather Forecasts (ECMWF), Regional Atmospheric Climate Model (RACMO) and Météo-France models. In this study, we use radar simulation (converting model variables into radar observations) and one-dimensional explicit microphysics numerical modelling to test and diagnose the cause of the deep sublimation depth-scales in the forecast model. The MetUM data and parametrization scheme are used to predict terminal velocity, which can be compared with the observed Doppler velocity. This can then be used to test the hypothesis as to why the sublimation depth-scale is too large within the MetUM. Turbulence could lead to dry air entrainment and higher evaporation rates; particle density may be wrong, particle capacitance may be too high and lead to incorrect evaporation rates or the humidity within the sublimating layer may be incorrectly represented. We show that the most likely cause of deep sublimation zones is an incorrect representation of model humidity in the layer. This is tested further by using a one-dimensional explicit microphysics model, which tests the sensitivity of ice sublimation to key atmospheric variables and is capable of including sonde and radar measurements to simulate real cases. Results suggest that the MetUM grid resolution at ice cloud altitudes is not sufficient enough to maintain the sharp drop in humidity that is observed in the sublimation zone.
Resumo:
DFT and TD-DFT calculations (ADF program) were performed in order to analyze the electronic structure of the [M-3(CO)(12)] clusters (M = Ru, Os) and interpret their electronic spectra. The highest occupied molecular orbitals are M-M bonding (sigma) involving different M-M bonds, both for Ru and Os. They participate in low-energy excitation processes and their depopulation should weaken M-M bonds in general. While the LUMO is M-NI and M-CO anti-bonding (sigma*), the next, higher-lying empty orbitals have a main contribution from CO (pi*) and either a small (Ru) or an almost negligible one (Os) from the metal atoms. The main difference between the two clusters comes from the different nature of these low-energy unoccupied orbitals that have a larger metal contribution in the case of ruthenium. The photochemical reactivity of the two clusters is reexamined and compared to earlier interpretations.