999 resultados para 1175


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The time-dependent climate response to changing concentrations of greenhouse gases and sulfate aerosols is studied using a coupled general circulation model of the atmosphere and the ocean (ECHAM4/OPYC3). The concentrations of the well-mixed greenhouse gases like CO2, CH4, N2O, and CFCs are prescribed for the past (1860–1990) and projected into the future according to International Panel on Climate Change (IPCC) scenario IS92a. In addition, the space–time distribution of tropospheric ozone is prescribed, and the tropospheric sulfur cycle is calculated within the coupled model using sulfur emissions of the past and projected into the future (IS92a). The radiative impact of the aerosols is considered via both the direct and the indirect (i.e., through cloud albedo) effect. It is shown that the simulated trend in sulfate deposition since the end of the last century is broadly consistent with ice core measurements, and the calculated radiative forcings from preindustrial to present time are within the uncertainty range estimated by IPCC. Three climate perturbation experiments are performed, applying different forcing mechanisms, and the results are compared with those obtained from a 300-yr unforced control experiment. As in previous experiments, the climate response is similar, but weaker, if aerosol effects are included in addition to greenhouse gases. One notable difference to previous experiments is that the strength of the Indian summer monsoon is not fundamentally affected by the inclusion of aerosol effects. Although the monsoon is damped compared to a greenhouse gas only experiment, it is still more vigorous than in the control experiment. This different behavior, compared to previous studies, is the result of the different land–sea distribution of aerosol forcing. Somewhat unexpected, the intensity of the global hydrological cycle becomes weaker in a warmer climate if both direct and indirect aerosol effects are included in addition to the greenhouse gases. This can be related to anomalous net radiative cooling of the earth’s surface through aerosols, which is balanced by reduced turbulent transfer of both sensible and latent heat from the surface to the atmosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ensembles of extended Atmospheric Model Intercomparison Project (AMIP) runs from the general circulation models of the National Centers for Environmental Prediction (formerly the National Meteorological Center) and the Max-Planck Institute (Hamburg, Germany) are used to estimate the potential predictability (PP) of an index of the Pacific–North America (PNA) mode of climate change. The PP of this pattern in “perfect” prediction experiments is 20%–25% of the index’s variance. The models, particularly that from MPI, capture virtually all of this variance in their hindcasts of the winter PNA for the period 1970–93. The high levels of internally generated model noise in the PNA simulations reconfirm the need for an ensemble averaging approach to climate prediction. This means that the forecasts ought to be expressed in a probabilistic manner. It is shown that the models’ skills are higher by about 50% during strong SST events in the tropical Pacific, so the probabilistic forecasts need to be conditional on the tropical SST. Taken together with earlier studies, the present results suggest that the original set of AMIP integrations (single 10-yr runs) is not adequate to reliably test the participating models’ simulations of interannual climate variability in the midlatitudes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-resolution GCM is found to simulate precipitation and surface energy balance of high latitudes with high accuracy. This opens new possibilities to investigate the future mass balance of polar glaciers and its effect on sea level. The surface mass balance of the Greenland and the Antarctic ice sheets is simulated using the ECHAM3 GCM with TI06 horizontal resolution. With this model, two 5-year integrations for the present and doubled carbon dioxide conditions based on the boundary conditions provided by the ECHAM1/T21 transient experiment have been conducted. A comparison of the two experiments over Greenland and Antarctica shows to what extent the effect of climate change on the mass balance on the two largest glaciers of the world can differ. On Greenland one sees a slight decrease in accumulation and a substantial increase in melt, while on Antarctica a large increase in accumulation without melt is projected. Translating the mass balances into terms of sea-level equivalent. the Greenland discharge causes a sea level rise of 1.1 mm yr−1, while the accumulation on Antarctica tends to lower it by 0.9 mm yr−1. The change in the combined mass balance of the two continents is almost zero. The sea level change of the next century can be affected more effectively by the thermal expansion of seawater and the mass balance of smaller glaciers outside of Greenland and Antarctica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Canadian Middle Atmosphere Model is used to examine the sensitivity of simulated climate to conservation of momentum in gravity wave drag parameterization. Momentum conservation requires that the parameterized gravity wave momentum flux at the top of the model be zero and corresponds to the physical boundary condition of no momentum flux at the top of the atmosphere. Allowing momentum flux to escape the model domain violates momentum conservation. Here the impact of momentum conservation in two sets of model simulations is investigated. In the first set, the simulation of present-day climate for two model-lid height configurations, 0.001 and 10 hPa, which are identical below 10 hPa, is considered. The impact of momentum conservation on the climate with the model lid at 0.001 hPa is minimal, which is expected because of the small amount of gravity wave momentum flux reaching 0.001 hPa. When the lid is lowered to 10 hPa and momentum is conserved, there is only a modest impact on the climate in the Northern Hemisphere; however, the Southern Hemisphere climate is more adversely affected by the deflection of resolved waves near the model lid. When momentum is not conserved in the 10-hPa model the climate is further degraded in both hemispheres, particularly in winter at high latitudes, and the impact of momentum conservation extends all the way to the surface. In the second set of simulations, the impact of momentum conservation and model-lid height on the modeled response to ozone depletion in the Southern Hemisphere is considered, and it is found that the response can display significant sensitivity to both factors. In particular, both the lower-stratospheric polar temperature and surface responses are significantly altered when the lid is lowered, with the effect being most severe when momentum is not conserved. The implications with regard to the current round of Intergovernmental Panel on Climate Change model projections are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The robustness of the parameterized gravity wave response to an imposed radiative perturbation in the middle atmosphere is examined. When momentum is conserved and for reasonable gravity wave drag parameters, the response to a polar cooling induces polar downwelling above the region of the imposed cooling, with consequent adiabatic warming. This response is robust to changes in the gravity wave source spectrum, background flow, gravity wave breaking criterion, and model lid height. When momentum is not conserved, either in the formulation or in the implementation of the gravity wave drag parameterization, the response becomes sensitive to the above-mentioned factors—in particular to the model lid height. The spurious response resulting from nonconservation is found to be nonnegligible in terms of the total gravity wave drag–induced downwelling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Canadian Middle Atmosphere Model (CMAM) has been used to examine the middle atmosphere response to CO2 doubling. The radiative-photochemical response induced by doubling CO2 alone and the response produced by changes in prescribed SSTs are found to be approximately additive, with the former effect dominating throughout the middle atmosphere. The paper discusses the overall response, with emphasis on the effects of SST changes, which allow a tropospheric response to the CO2 forcing. The overall response is a cooling of the middle atmosphere accompanied by significant increases in the ozone and water vapor abundances. The ozone radiative feedback occurs through both an increase in solar heating and a decrease in infrared cooling, with the latter accounting for up to 15% of the total effect. Changes in global mean water vapor cooling are negligible above ~30 hPa. Near the polar summer mesopause, the temperature response is weak and not statistically significant. The main effects of SST changes are a warmer troposphere, a warmer and higher tropopause, cell-like structures of heating and cooling at low and middlelatitudes in the middle atmosphere, warming in the summer mesosphere, water vapor increase throughout the domain, and O3 decrease in the lower tropical stratosphere. No noticeable change in upwardpropagating planetary wave activity in the extratropical winter–spring stratosphere and no significant temperature response in the polar winter–spring stratosphere have been detected. Increased upwelling in the tropical stratosphere has been found to be linked to changed wave driving at low latitudes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The spatial structure and phase velocity of tropopause disturbances localized around the subpolar jet in the Southern Hemisphere are investigated using 6-hourly European Centre for Medium-Range Weather Forecasts reanalysis data covering 15 yr (1979–93). The phase velocity and phase structure of the tropopause disturbances are in good agreement with those of an edge wave vertically trapped at the tropopause. However, the vertical distribution of the ratio of potential to kinetic energy exhibits maxima above and below the tropopause and a minimum around the tropopause, in contradiction to edge wave theory for which the ratio is unity throughout the troposphere and stratosphere. This difference in vertical structure between the observed tropopause disturbances and edge wave theory is attributed to the effects of a finite-depth tropopause together with the next-order corrections in Rossby number to quasigeostrophic dynamics

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observational and numerical evidence suggest that variability in the extratropical stratospheric circulation has a demonstrable impact on tropospheric variability on intraseasonal time scales. In this study, it is demonstrated that the amplitude of the observed tropospheric response to vacillations in the stratospheric flow is quantitatively similar to the zonal-mean balanced response to the anomalous wave forcing at stratospheric levels. It is further demonstrated that the persistence of the tropospheric response is consistent with the impact of anomalous diabatic heating in the polar stratosphere as stratospheric temperatures relax to climatology. The results contradict previous studies that suggest that variations in stratospheric wave drag are too weak to account for the attendant changes in the tropospheric flow. However, the results also reveal that stratospheric processes alone cannot account for the observed meridional redistribution of momentum within the troposphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The currently available model-based global data sets of atmospheric circulation are a by-product of the daily requirement of producing initial conditions for numerical weather prediction (NWP) models. These data sets have been quite useful for studying fundamental dynamical and physical processes, and for describing the nature of the general circulation of the atmosphere. However, due to limitations in the early data assimilation systems and inconsistencies caused by numerous model changes, the available model-based global data sets may not be suitable for studying global climate change. A comprehensive analysis of global observations based on a four-dimensional data assimilation system with a realistic physical model should be undertaken to integrate space and in situ observations to produce internally consistent, homogeneous, multivariate data sets for the earth's climate system. The concept is equally applicable for producing data sets for the atmosphere, the oceans, and the biosphere, and such data sets will be quite useful for studying global climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identifying the prime drivers of the twentieth-century multidecadal variability in the Atlantic Ocean is crucial for predicting how the Atlantic will evolve in the coming decades and the resulting broad impacts on weather and precipitation patterns around the globe. Recently, Booth et al. showed that the Hadley Centre Global Environmental Model, version 2, Earth system configuration (HadGEM2-ES) closely reproduces the observed multidecadal variations of area-averaged North Atlantic sea surface temperature in the twentieth century. The multidecadal variations simulated in HadGEM2-ES are primarily driven by aerosol indirect effects that modify net surface shortwave radiation. On the basis of these results, Booth et al. concluded that aerosols are a prime driver of twentieth-century North Atlantic climate variability. However, here it is shown that there are major discrepancies between the HadGEM2-ES simulations and observations in the North Atlantic upper-ocean heat content, in the spatial pattern of multidecadal SST changes within and outside the North Atlantic, and in the subpolar North Atlantic sea surface salinity. These discrepancies may be strongly influenced by, and indeed in large part caused by, aerosol effects. It is also shown that the aerosol effects simulated in HadGEM2-ES cannot account for the observed anticorrelation between detrended multidecadal surface and subsurface temperature variations in the tropical North Atlantic. These discrepancies cast considerable doubt on the claim that aerosol forcing drives the bulk of this multidecadal variability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamics of Northern Hemisphere major midwinter stratospheric sudden warmings (SSWs) are examined using transient climate change simulations from the Canadian Middle Atmosphere Model (CMAM). The simulated SSWs show good overall agreement with reanalysis data in terms of composite structure, statistics, and frequency. Using observed or model sea surface temperatures (SSTs) is found to make no significant difference to the SSWs, indicating that the use of model SSTs in the simulations extending into the future is not an issue. When SSWs are defined by the standard (wind based) definition, an absolute criterion, their frequency is found to increase by;60% by the end of this century, in conjunction with a;25% decrease in their temperature amplitude. However, when a relative criterion based on the northern annular mode index is used to define the SSWs, no future increase in frequency is found. The latter is consistent with the fact that the variance of 100-hPa daily heat flux anomalies is unaffected by climate change. The future increase in frequency of SSWs using the standard method is a result of the weakened climatological mean winds resulting from climate change, which make it easier for the SSW criterion to be met. A comparison of winters with and without SSWs reveals that the weakening of the climatological westerlies is not a result of SSWs. The Brewer–Dobson circulation is found to be stronger by ;10% during winters with SSWs, which is a value that does not change significantly in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The behavior of the ensemble Kalman filter (EnKF) is examined in the context of a model that exhibits a nonlinear chaotic (slow) vortical mode coupled to a linear (fast) gravity wave of a given amplitude and frequency. It is shown that accurate recovery of both modes is enhanced when covariances between fast and slow normal-mode variables (which reflect the slaving relations inherent in balanced dynamics) are modeled correctly. More ensemble members are needed to recover the fast, linear gravity wave than the slow, vortical motion. Although the EnKF tends to diverge in the analysis of the gravity wave, the filter divergence is stable and does not lead to a great loss of accuracy. Consequently, provided the ensemble is large enough and observations are made that reflect both time scales, the EnKF is able to recover both time scales more accurately than optimal interpolation (OI), which uses a static error covariance matrix. For OI it is also found to be problematic to observe the state at a frequency that is a subharmonic of the gravity wave frequency, a problem that is in part overcome by the EnKF.However, error in themodeled gravity wave parameters can be detrimental to the performance of the EnKF and remove its implied advantages, suggesting that a modified algorithm or a method for accounting for model error is needed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sufficient conditions are derived for the linear stability with respect to zonally symmetric perturbations of a steady zonal solution to the nonhydrostatic compressible Euler equations on an equatorial � plane, including a leading order representation of the Coriolis force terms due to the poleward component of the planetary rotation vector. A version of the energy–Casimir method of stability proof is applied: an invariant functional of the Euler equations linearized about the equilibrium zonal flow is found, and positive definiteness of the functional is shown to imply linear stability of the equilibrium. It is shown that an equilibrium is stable if the potential vorticity has the same sign as latitude and the Rayleigh centrifugal stability condition that absolute angular momentum increase toward the equator on surfaces of constant pressure is satisfied. The result generalizes earlier results for hydrostatic and incompressible systems and for systems that do not account for the nontraditional Coriolis force terms. The stability of particular equilibrium zonal velocity, entropy, and density fields is assessed. A notable case in which the effect of the nontraditional Coriolis force is decisive is the instability of an angular momentum profile that decreases away from the equator but is flatter than quadratic in latitude, despite its satisfying both the centrifugal and convective stability conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of spurious excitation of gravity waves in the context of four-dimensional data assimilation is investigated using a simple model of balanced dynamics. The model admits a chaotic vortical mode coupled to a comparatively fast gravity wave mode, and can be initialized such that the model evolves on a so-called slow manifold, where the fast motion is suppressed. Identical twin assimilation experiments are performed, comparing the extended and ensemble Kalman filters (EKF and EnKF, respectively). The EKF uses a tangent linear model (TLM) to estimate the evolution of forecast error statistics in time, whereas the EnKF uses the statistics of an ensemble of nonlinear model integrations. Specifically, the case is examined where the true state is balanced, but observation errors project onto all degrees of freedom, including the fast modes. It is shown that the EKF and EnKF will assimilate observations in a balanced way only if certain assumptions hold, and that, outside of ideal cases (i.e., with very frequent observations), dynamical balance can easily be lost in the assimilation. For the EKF, the repeated adjustment of the covariances by the assimilation of observations can easily unbalance the TLM, and destroy the assumptions on which balanced assimilation rests. It is shown that an important factor is the choice of initial forecast error covariance matrix. A balance-constrained EKF is described and compared to the standard EKF, and shown to offer significant improvement for observation frequencies where balance in the standard EKF is lost. The EnKF is advantageous in that balance in the error covariances relies only on a balanced forecast ensemble, and that the analysis step is an ensemble-mean operation. Numerical experiments show that the EnKF may be preferable to the EKF in terms of balance, though its validity is limited by ensemble size. It is also found that overobserving can lead to a more unbalanced forecast ensemble and thus to an unbalanced analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper provides an update on research in the relatively new and fast-moving field of decadal climate prediction, and addresses the use of decadal climate predictions not only for potential users of such information but also for improving our understanding of processes in the climate system. External forcing influences the predictions throughout, but their contributions to predictive skill become dominant after most of the improved skill from initialization with observations vanishes after about six to nine years. Recent multi-model results suggest that there is relatively more decadal predictive skill in the North Atlantic, western Pacific, and Indian Oceans than in other regions of the world oceans. Aspects of decadal variability of SSTs, like the mid-1970s shift in the Pacific, the mid-1990s shift in the northern North Atlantic and western Pacific, and the early-2000s hiatus, are better represented in initialized hindcasts compared to uninitialized simulations. There is evidence of higher skill in initialized multi-model ensemble decadal hindcasts than in single model results, with multi-model initialized predictions for near term climate showing somewhat less global warming than uninitialized simulations. Some decadal hindcasts have shown statistically reliable predictions of surface temperature over various land and ocean regions for lead times of up to 6-9 years, but this needs to be investigated in a wider set of models. As in the early days of El Niño-Southern Oscillation (ENSO) prediction, improvements to models will reduce the need for bias adjustment, and increase the reliability, and thus usefulness, of decadal climate predictions in the future.