944 resultados para 1-min average


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: The aim of this study was to screen CO2 laser (10.6 mu m) parameters to increase enamel resistance to a continuous-flow erosive challenge. Background data: A new clinical CO2 laser providing pulses of hundreds of microseconds, a range known to increase tooth acid-resistance, has been introduced in the market. Methods: Different laser parameters were tested in 12 groups (n = 20) with varying fluences from 0.1 to 0.9 J/cm(2), pulse durations from 80 to 400 mu s and repetition rates from 180 to 700 Hz. Non-lased samples (n = 30) served as controls. All samples were eroded by exposure to hydrochloric acid (pH 2.6) under continuous acid flow (60 mu L/min). Calcium and phosphate release into acid was monitored colorimetrically at 30 sec intervals up to 5 min and at 1 min intervals up to a total erosion time of 15 min. Scanning electron microscopic (SEM) analysis was performed in lased samples (n = 3). Data were statistically analysed by one-way ANOVA (p < 0.05) and Dunnett's post-hoc tests. Results: Calcium and phosphate release were significantly reduced by a maximum of 20% over time in samples irradiated with 0.4 J/cm(2) (200 mu s) at 450 Hz. Short-time reduction of calcium loss (<= 1.5 min) could be also achieved by irradiation with 0.7 J/cm(2) (300 mu s) at 200 and 300 Hz. Both parameters revealed surface modification. Conclusions: A set of CO2 laser parameters was found that could significantly reduce enamel mineral loss (20%) under in vitro erosive conditions. However, as all parameters also caused surface cracking, they are not recommended for clinical use.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alicyclobacillus acidoterrestris is a spoilage-causing bacterium in fruit juices. The inactivation of this bacterium by commercial saponin and saponin purified extract from Sapindus saponaria fruits combined with heat-treatment is described. We investigated heat treatment (87, 90, 95, and 99 degrees C) with incubation time ranging from 0 to 50 min, in both concentrated and reconstituted juice. juices were inoculated with 1.0 x 10(4) CFU/mL of A. acidoterrestris spores for the evaluation of the best temperature for inactivation. For the temperatures of 87, 90, and 95 degrees C counts of cell viability decreased rapidly within the first 10 to 20 min of incubation in both concentrated and reconstituted juices; inactivation at 99 degrees C ensued within 1 and 2 min. Combination of commercial saponin (100 mg/L) with a very short incubation time (1 min) at 99 degrees C showed a reduction of 234 log cycle for concentrated juice A. acidoterrestris spores (1.0 x 10(4) CFU/mL) in the first 24 h of incubation after treatments. The most efficient treatment was reached with 300, 400 or 500 mg/L of purified extract of saponins from S. saponaria after 5 days of incubation in concentrated juice, and after 5 days with 300 and 400 mg/L or 72 h with 500 mg/L in reconstituted juice. Commercial saponin and purified extracts from S. saponaria had similar inactivation power on A. acidoterrestris spores, without significant differences (P>0.05). Therefore, purified extract of saponins can be an alternative for the control of A acidoterrestris in fruit juices. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

PURPOSE: To evaluate the effect of inspiratory muscle training (IMT) on cardiac autonomic modulation and on peripheral nerve sympathetic activity in patients with chronic heart failure (CHF). METHODS: Functional capacity, low-frequency (LF) and high-frequency (HF) components of heart rate variability, muscle sympathetic nerve activity inferred by microneurography, and quality of life were determined in 27 patients with CHF who had been sequentially allocated to 1 of 2 groups: (1) control group (with no intervention) and (2) IMT group. Inspiratory muscle training consisted of respiratory exercises, with inspiratory threshold loading of seven 30-minute sessions per week for a period of 12 weeks, with a monthly increase of 30% in maximal inspiratory pressure (PImax) at rest. Multivariate analysis was applied to detect differences between baseline and followup period. RESULTS: Inspiratory muscle training significantly increased PImax (59.2 +/- 4.9 vs 87.5 +/- 6.5 cmH(2)O, P = .001) and peak oxygen uptake (14.4 +/- 0.7 vs 18.9 +/- 0.8 mL.kg(-1).min(-1), P = .002); decreased the peak ventilation (V. E) +/- carbon dioxide production (V-CO2) ratio (35.8 +/- 0.8 vs 32.5 +/- 0.4, P = .001) and the (V) over dotE +/-(V) over dotCO(2) slope (37.3 +/- 1.1 vs 31.3 +/- 1.1, P = .004); increased the HF component (49.3 +/- 4.1 vs 58.4 +/- 4.2 normalized units, P = .004) and decreased the LF component (50.7 +/- 4.1 vs 41.6 +/- 4.2 normalized units, P = .001) of heart rate variability; decreased muscle sympathetic nerve activity (37.1 +/- 3 vs 29.5 +/- 2.3 bursts per minute, P = .001); and improved quality of life. No significant changes were observed in the control group. CONCLUSION: Home-based IMT represents an important strategy to improve cardiac and peripheral autonomic controls, functional capacity, and quality of life in patients with CHF.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This proof-of-concept study assessed whether the reduction of the degradation of the demineralized organic matrix (DOM) by pre-treatment with protease inhibitors (PI) is effective against dentin matrix loss. Bovine dentin slices were demineralized with 0.87 M citric acid, pH 2.3, for 36 hrs. In sequence, specimens were treated or not (UT, untreated) for 1 min with gels containing epigallocatechin 3-gallate (EGCG, 400 A mu M), chlorhexidine (CHX, 0.012%), FeSO4 (1 mM), NaF (1.23%), or no active compound (P, placebo). Specimens were then stored in artificial saliva (5 days, 37 degrees C) with the addition of collagenase (Clostridium histolyticum, 100 U/mL). We analyzed collagen degradation by assaying hydroxyproline (HYP) in the incubation solutions (n = 5) and evaluated the dentin matrix loss by profilometry (n = 12). Data were analyzed by ANOVA and Tukey's test (p < 0.05). Treatment with gels containing EGCG, CHX, or FeSO4 led to significantly lower HYP concentrations in solution and dentin matrix loss when compared with the other treatments. These results strongly suggest that the preventive effects of the PI tested against dentin erosion are due to their ability to reduce the degradation of the DOM.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Background Prior to the selection of disinfectants for low, intermediate and high (sterilizing) levels, the decimal reduction time, D-value, for the most common and persistent bacteria identified at a health care facility should be determined. Methods The D-value was determined by inoculating 100 mL of disinfecting solution with 1 mL of a bacterial suspension (104 – 105 CFU/mL for vegetative and spore forms). At regular intervals, 1 mL aliquots of this mixture were transferred to 8 mL of growth media containing a neutralizing agent, and incubated at optimal conditions for the microorganism. Results The highest D-values for various bacteria were determined for the following solutions: (i) 0.1% sodium dichloroisocyanurate (pH 7.0) – E. coli and A. calcoaceticus (D = 5.9 min); (ii) sodium hypochlorite (pH 7.0) at 0.025% for B. stearothermophilus (D = 24 min), E. coli and E. cloacae (D = 7.5 min); at 0.05% for B. stearothermophilus (D = 9.4 min) and E. coli (D = 6.1 min) and 0.1% for B. stearothermophilus (D = 3.5 min) and B. subtilis (D = 3.2 min); (iii) 2.0% glutaraldehyde (pH 7.4) – B. stearothermophilus, B. subtilis (D = 25 min) and E. coli (D = 7.1 min); (iv) 0.5% formaldehyde (pH 6.5) – B. subtilis (D = 11.8 min), B. stearothermophilus (D = 10.9 min) and A. calcoaceticus (D = 5.2 min); (v) 2.0% chlorhexidine (pH 6.2) – B. stearothermophilus (D = 9.1 min), and at 0.4% for E. cloacae (D = 8.3 min); (vi) 1.0% Minncare® (peracetic acid and hydrogen peroxide, pH 2.3) – B. stearothermophilus (D = 9.1 min) and E. coli (D = 6.7 min). Conclusions The suspension studies were an indication of the disinfectant efficacy on a surface. The data in this study reflect the formulations used and may vary from product to product. The expected effectiveness from the studied formulations showed that the tested agents can be recommended for surface disinfection as stated in present guidelines and emphasizes the importance and need to develop routine and novel programs to evaluate product utility.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This in vitro study evaluated the preventive potential of experimental pastes containing 10% and 20% hydroxyapatite nanoparticles (Nano-HAP), with or without fluoride, on dental demineralization. Bovine enamel (n=15) and root dentin (n=15) specimens were divided into 9 groups according to their surface hardness: control (without treatment), 20 Nanop paste (20% HAP), 20 Nanop paste plus (20% HAP + 0.2% NaF), 10 Nanop paste (10% HAP), 10 Nanop paste plus (10% HAP + 0.2% NaF), placebo paste (without fluoride and HAP), fluoride paste (0.2% NaF), MI paste (CPP-ACP, casein phosphopeptide-amorphous calcium phosphate), and MI paste plus (CPP-ACP + 0.2% NaF). Both MI pastes were included as commercial control products containing calcium phosphate. The specimens were treated with the pastes twice a day (1 min), before and after demineralization. The specimens were subjected to a pH-cycling model (demineralization–6-8 h/ remineralization-16-18 h a day) for 7 days. The dental subsurface demineralization was analyzed using cross-sectional hardness (kgf/mm 2 , depth 10-220 µm). Data were tested using repeated-measures two-way ANOVA and Bonferroni's test (p<0.05). The only treatment able to reduce the loss of enamel and dentin subsurface hardness was fluoride paste (0.2% NaF), which differed significantly from the control at 30- and 50-µm depth (p<0.0001). The other treatments were not different from each other or compared with the control. The experimental Nanop pastes, regardless of the addition of fluoride, were unable to reduce dental demineralization in vitro.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study evaluated by an in vitro model the effect of beverages on dental enamel previously subjected to erosive challenge with hydrochloric acid. The factor under study was the type of beverage, in five levels: Sprite® Zero Low-calorie Soda Lime (positive control), Parmalat® ultra high temperature (UHT) milk, Ades® Original soymilk, Leão® Ice Tea Zero ready-to-drink low-calorie peach-flavored black teaand Prata® natural mineral water (negative control). Seventy-five bovine enamel specimens were distributed among the five types of beverages (n=15), according to a randomized complete block design. For the formation of erosive wear lesions, the specimens were immersed in 10 mL aqueous solution of hydrochloric acid 0.01 M for 2 min. Subsequently, the specimens were immersed in 20 mL of the beverages for 1 min, twice daily for 2 days at room temperature. In between, the specimens were kept in 20 mL of artificial saliva at 37ºC. The response variable was the quantitative enamel microhardness. ANOVA and Tukey's test showed highly significant differences (p<0.00001) in the enamel exposed to hydrochloric acid and beverages. The soft drink caused a significantly higher decrease in microhardness compared with the other beverages. The black tea caused a significantly higher reduction in microhardness than the mineral water, UHT milk and soymilk, but lower than the soft drink. Among the analyzed beverages, the soft drink and the black tea caused the most deleterious effects on dental enamel microhardness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[EN] During maximal whole body exercise VO2 peak is limited by O2 delivery. In turn, it is though that blood flow at near-maximal exercise must be restrained by the sympathetic nervous system to maintain mean arterial pressure. To determine whether enhancing vasodilation across the leg results in higher O2 delivery and leg VO2 during near-maximal and maximal exercise in humans, seven men performed two maximal incremental exercise tests on the cycle ergometer. In random order, one test was performed with and one without (control exercise) infusion of ATP (8 mg in 1 ml of isotonic saline solution) into the right femoral artery at a rate of 80 microg.kg body mass-1.min-1. During near-maximal exercise (92% of VO2 peak), the infusion of ATP increased leg vascular conductance (+43%, P<0.05), leg blood flow (+20%, 1.7 l/min, P<0.05), and leg O2 delivery (+20%, 0.3 l/min, P<0.05). No effects were observed on leg or systemic VO2. Leg O2 fractional extraction was decreased from 85+/-3 (control) to 78+/-4% (ATP) in the infused leg (P<0.05), while it remained unchanged in the left leg (84+/-2 and 83+/-2%; control and ATP; n=3). ATP infusion at maximal exercise increased leg vascular conductance by 17% (P<0.05), while leg blood flow tended to be elevated by 0.8 l/min (P=0.08). However, neither systemic nor leg peak VO2 values where enhanced due to a reduction of O2 extraction from 84+/-4 to 76+/-4%, in the control and ATP conditions, respectively (P<0.05). In summary, the VO2 of the skeletal muscles of the lower extremities is not enhanced by limb vasodilation at near-maximal or maximal exercise in humans. The fact that ATP infusion resulted in a reduction of O2 extraction across the exercising leg suggests a vasodilating effect of ATP on less-active muscle fibers and other noncontracting tissues and that under normal conditions these regions are under high vasoconstrictor influence to ensure the most efficient flow distribution of the available cardiac output to the most active muscle fibers of the exercising limb.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[EN] In this review we integrate ideas about regional and systemic circulatory capacities and the balance between skeletal muscle blood flow and cardiac output during heavy exercise in humans. In the first part of the review we discuss issues related to the pumping capacity of the heart and the vasodilator capacity of skeletal muscle. The issue is that skeletal muscle has a vast capacity to vasodilate during exercise [approximately 300 mL (100 g)(-1) min(-1)], but the pumping capacity of the human heart is limited to 20-25 L min(-1) in untrained subjects and approximately 35 L min(-1) in elite endurance athletes. This means that when more than 7-10 kg of muscle is active during heavy exercise, perfusion of the contracting muscles must be limited or mean arterial pressure will fall. In the second part of the review we emphasize that there is an interplay between sympathetic vasoconstriction and metabolic vasodilation that limits blood flow to contracting muscles to maintain mean arterial pressure. Vasoconstriction in larger vessels continues while constriction in smaller vessels is blunted permitting total muscle blood flow to be limited but distributed more optimally. This interplay between sympathetic constriction and metabolic dilation during heavy whole-body exercise is likely responsible for the very high levels of oxygen extraction seen in contracting skeletal muscle. It also explains why infusing vasodilators in the contracting muscles does not increase oxygen uptake in the muscle. Finally, when approximately 80% of cardiac output is directed towards contracting skeletal muscle modest vasoconstriction in the active muscles can evoke marked changes in arterial pressure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[EN] BACKGROUND: To determine if there is an association between physical activity assessed by the short version of the International Physical Activity Questionnaire (IPAQ) and cardiorespiratory and muscular fitness. METHODOLOGY/PRINCIPAL FINDINGS: One hundred and eighty-two young males (age range: 20-55 years) completed the short form of the IPAQ to assess physical activity. Body composition (dual-energy X-Ray absorptiometry), muscular fitness (static and dynamic muscle force and power, vertical jump height, running speed [30 m sprint], anaerobic capacity [300 m running test]) and cardiorespiratory fitness (estimated VO(2)max: 20 m shuttle run test) were also determined in all subjects. Activity-related energy expenditure of moderate and vigorous intensity (EEPA(moderate) and EEPA(vigorous), respectively) was inversely associated with indices of adiposity (r = -0.21 to -0.37, P<0.05). Cardiorespiratory fitness (VO(2)max) was positively associated with LogEEPA(moderate) (r = 0.26, P<0.05) and LogEEPA(vigorous) (r = 0.27). However, no association between VO(2)max with LogEEPA(moderate), LogEPPA(vigorous) and LogEEPA(total) was observed after adjusting for the percentage of body fat. Multiple stepwise regression analysis to predict VO(2)max from LogEEPA(walking), LogEEPA(moderate), LogEEPA(vigorous), LogEEPA(total), age and percentage of body fat (%fat) showed that the %fat alone explained 62% of the variance in VO(2)max and that the age added another 10%, while the other variables did not add predictive value to the model [VO(2)max = 129.6-(25.1x Log %fat) - (34.0x Log age); SEE: 4.3 ml.kg(-1). min(-1); R(2) = 0.72 (P<0.05)]. No positive association between muscular fitness-related variables and physical activity was observed, even after adjusting for body fat or body fat and age. CONCLUSIONS/SIGNIFICANCE: Adiposity and age are the strongest predictors of VO(2)max in healthy men. The energy expended in moderate and vigorous physical activities is inversely associated with adiposity. Muscular fitness does not appear to be associated with physical activity as assessed by the IPAQ.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[EN] As a consequence to hypobaric hypoxic exposure skeletal muscle atrophy is often reported. The underlying mechanism has been suggested to involve a decrease in protein synthesis in order to conserve O(2). With the aim to challenge this hypothesis, we applied a primed, constant infusion of 1-(13)C-leucine in nine healthy male subjects at sea level and subsequently at high-altitude (4559 m) after 7-9 days of acclimatization. Physical activity levels and food and energy intake were controlled prior to the two experimental conditions with the aim to standardize these confounding factors. Blood samples and expired breath samples were collected hourly during the 4 hour trial and vastus lateralis muscle biopsies obtained at 1 and 4 hours after tracer priming in the overnight fasted state. Myofibrillar protein synthesis rate was doubled; 0.041+/-0.018 at sea-level to 0.080+/-0.018%hr(-1) (p<0.05) when acclimatized to high altitude. The sarcoplasmic protein synthesis rate was in contrast unaffected by altitude exposure; 0.052+/-0.019 at sea-level to 0.059+/-0.010%hr(-1) (p>0.05). Trends to increments in whole body protein kinetics were seen: Degradation rate elevated from 2.51+/-0.21 at sea level to 2.73+/-0.13 micromolkg(-1)min(-1) (p = 0.05) at high altitude and synthesis rate similar; 2.24+/-0.20 at sea level and 2.43+/-0.13 micromolkg(-1)min(-1) (p>0.05) at altitude. We conclude that whole body amino acid flux is increased due to an elevated protein turnover rate. Resting skeletal muscle myocontractile protein synthesis rate was concomitantly elevated by high-altitude induced hypoxia, whereas the sarcoplasmic protein synthesis rate was unaffected by hypoxia. These changed responses may lead to divergent adaptation over the course of prolonged exposure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[EN] That muscular blood flow may reach 2.5 l kg(-1) min(-1) in the quadriceps muscle has led to the suggestion that muscular vascular conductance must be restrained during whole body exercise to avoid hypotension. The main aim of this study was to determine the maximal arm and leg muscle vascular conductances (VC) during leg and arm exercise, to find out if the maximal muscular vasodilatory response is restrained during maximal combined arm and leg exercise. Six Swedish elite cross-country skiers, age (mean +/-s.e.m.) 24 +/- 2 years, height 180 +/- 2 cm, weight 74 +/- 2 kg, and maximal oxygen uptake (VO(2,max)) 5.1 +/- 0.1 l min(-1) participated in the study. Femoral and subclavian vein blood flows, intra-arterial blood pressure, cardiac output, as well as blood gases in the femoral and subclavian vein, right atrium and femoral artery were determined during skiing (roller skis) at approximately 76% of VO(2,max) and at VO(2,max) with different techniques: diagonal stride (combined arm and leg exercise), double poling (predominantly arm exercise) and leg skiing (predominantly leg exercise). During submaximal exercise cardiac output (26-27 l min(-1)), mean blood pressure (MAP) (approximately 87 mmHg), systemic VC, systemic oxygen delivery and pulmonary VO2(approximately 4 l min(-1)) attained similar values regardless of exercise mode. The distribution of cardiac output was modified depending on the musculature engaged in the exercise. There was a close relationship between VC and VO2 in arms (r= 0.99, P < 0.001) and legs (r= 0.98, P < 0.05). Peak arm VC (63.7 +/- 5.6 ml min(-1) mmHg(-1)) was attained during double poling, while peak leg VC was reached at maximal exercise with the diagonal technique (109.8 +/- 11.5 ml min(-1) mmHg(-1)) when arm VC was 38.8 +/- 5.7 ml min(-1) mmHg(-1). If during maximal exercise arms and legs had been vasodilated to the observed maximal levels then mean arterial pressure would have dropped at least to 75-77 mmHg in our experimental conditions. It is concluded that skeletal muscle vascular conductance is restrained during whole body exercise in the upright position to avoid hypotension.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[EN] 1. This study examined the effects of caloric content (caloric density and the nature of calories) on the rate of gastric emptying using the double-sampling gastric aspiration technique. Four test meals of 600 ml (glucose, 0.1 kcal ml-1; pea and whey peptide hydrolysates, both 0.2 kcal ml-1; milk protein, 0.7 kcal ml-1) were tested in six healthy subjects in random order on four separate occasions. 2. The glucose solution was emptied the fastest with a half-time of 9.4 +/- 1.2 min (P < 0.05) and the milk protein the slowest with a half-time of 26.4 +/- 10.0 min (P < 0.05); the pea peptide hydrolysate and whey peptide hydrolysate solutions had half-times of emptying of 16.3 +/- 5.4 and 17.2 +/- 6.1 min, respectively. The rates of gastric emptying for the peptide hydrolysate solutions derived from different protein sources were not different. 3. Despite the lower rate of gastric emptying for the milk protein solution, the rate of caloric delivery to the duodenum during the early phase of the gastric emptying process was higher than that for the other three solutions (46.3 +/- 6, 63.5 +/- 22, 62.5 +/- 19 and 113.8 +/- 25 cal min-1 kg-1 for the glucose, pea peptide hydrolysate, whey peptide hydrolysate and milk protein meals, respectively; P < 0.05). The caloric density of the test solutions was linearly related to the half-time of gastric emptying (r = 0.96, P < 0.05) as well as to the rate at which calories were delivered to the duodenum (r = 0.99, P < 0.001). 4. This study demonstrates that the rate of gastric emptying is a function of the caloric density of the ingested meal and that a linear relationship exists between these variables. Furthermore, the nature of the calories seems to play a minor role in determining the rate of gastric emptying in humans.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Zusammenfassung Der Lichtsammlerkomplex (LHCII) aus PhotosystemII hoeherer Pflanzen kann in vitro rekonstituiert werden. Es werden drei Reaktionszeiten (<10 s; <1 min; <10 min) aufgeloest. Dabei werden bei allen Reaktionszeiten Pigmente durch das Apoprotein gebunden. Chlorophylle (Chl a und Chl b) und Xanthophylle wirken limitierend auf die Rekonstitution. Chl a beschleunigt die zweite Reaktionszeit, ein ausgeglichenes Chl a/b-Verhaeltnis verkürzt die dritte Reaktionszeit. Ein molekularer Mechanismus als Interpretation dieser Effekte wird vorgeschlagen. Native Lipide verlaengern nichtspezifisch die Rekonstitution. Abiotische Faktoren haben einen spezifischen Einfluss auf die Rekonstitution. Spezifische Einfluesse der o. a. Bedingungen auf die thermische Stabilitaet des rekonstituierten LHCII wurden bestimmt.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Gegenstand und Ziel der vorliegenden Arbeit war die Synthese und Charakterisierung einer Hydrogelmatrix, welche für die Herstellung eines vielseitig verwendbaren Sensors, der mehrere Analyten (Proteine, DNA etc.) in hoher Verdünnung (c0 < 50 fM) aus kleinsten Probenmengen (Volumina <20 nl) schnell (t < 1 min) und parallel nachweisen kann, Verwendung finden soll. Der Fokus der Arbeit lag dabei in der Synthese und Charakterisierung von Copolymeren als Hydrogelmatrix, welche geeignetes temperaturabhängiges Verhalten zeigen. Die Copolymere wurden in eine dreidimensionale Netzwerkstruktur überführt und auf einer Goldoberfläche kovalent angebunden, um Delamination zu vermeiden und die Untersuchung mittels Oberflächenplasmonenresonanz-Spektroskopie (SPR) und Optischer Wellenleiter-Spektroskopie (OWS) zu erlauben. Weiterhin wurde das temperaturabhängige Verhalten der Polymernetzwerke in Wasser mittels optischen Messungen (SPR/OWS) untersucht, um Erkenntnisse über die Quell- und Kollabiereigenschaften des Hydrogels zu gewinnen. Um temperaturschaltbare Hydrogele herzustellen, wurden auf N-Isopropylacrylamid (NIPAAm) basierende Polymere synthetisiert. Es wurde sowohl die für Hydrogele übliche Methode der freien radikalischen Vernetzungspolymerisation in Wasser, wie eine neue, auf Benzophenoneinheiten basierende Syntheseroute, welche die freie radikalische Polymerisation in organischem Medium nutzt, verwendet. Die synthetisierten Polymere sind Copolymere aus N‑Isopropylacrylamid (NIPAAm) und 4-Methacryloyloxybenzophenon (MABP). NIPAAm ist dabei für das temperaturschaltbare Verhalten der Gele verantwortlich und MABP dient als Photovernetzer. Weitere Copolymere, die neben den genannten Monomeren noch andere Funktionen, wie z.B. ionische Gruppen oder Aktivesterfunktionen enthalten, wurden ebenfalls synthetisiert. Das temperaturabhängige Quellverhalten in Bezug auf die chemische Zusammensetzung wurde mit der Oberflächenplasmonenresonanz-Spektroskopie (SPR) und Optischen Wellenleiter-Spektroskopie (OWS) untersucht. Es zeigte sich, dass die Anwesenheit von Salz im Hydrogel (Natriumacrylat als Monomer, P4S) Inhomogenität, in Form eines Brechungsindexgradienten senkrecht zur Substratoberfläche, hervorruft. Dies ist nicht der Fall, wenn statt des Salzes die Säure (Methacrylsäure als Monomer, P4A) verwendet wird. Durch die Inhomogenität lassen sich die Filme mit dem Natriummethacrylat nicht mehr mit dem, üblicherweise zur Auswertung genutzten, Kastenmodell beschreiben. Die Anwendung der Wentzel-Kramers-Brillouin-Näherung (WKB) auf die Messdaten führt hingegen zu dem gewünschten Ergebnis. Man findet ein kastenähnliches Brechungsindexprofil für das Hydrogel mit der Säure (P4A) und ein Gradientenprofil für das Gel mit dem Salz (P4S). Letzteres ist nicht nur hydrophiler und insgesamt stärker gequollen, sondern ragt auch weiter in die überstehende Wasserphase hinein. Anhand eines säurehaltigen Hydrogels (P8A) konnte der quellungshemmende Einfluss von hohen Salzkonzentrationen gezeigt werden. Weiterhin wurde während des Quellvorgangs eine gewisse Anisotropie gefunden, die aber im vollständig gequollenen und vollständig kollabierten Zustand nicht mehr vorliegt. Anhand eines Hydrogels ohne ionisierbare Gruppen (P9) wurde die Reversibilität des Quell- und Kollabiervorgangs gezeigt. Bei einem Vergleich zwischen einem säurehaltigen Hydrogel (P8A, Quellgrad von 7,3) und einem ohne ionisierbare Gruppen (P9, Quellgrad von 6,1), hat die Anwesenheit der 8 mol% Säuregruppen eine leichte Verstärkung der Quellung um den Faktor 1,2 bewirkt. Rasterkraftmikroskopische Untersuchungen (AFM) an diesen beiden Hydrogelen im getrockneten Zustand, haben gezeigt, dass nach dem Quellen, Kollabieren und Trocknen bei beiden Gelen Porenstrukturen sehr unterschiedlicher Ausmaße vorliegen.