994 resultados para 070706 Veterinary Medicine
Resumo:
Hemophilia A is an X-linked inherited disorder characterized by a Factor VIII (FVIII) deficiency, being therefore transmitted by female dogs to their offspring. Since it is a secondary hemostatic defect, the main clinical signs are hematomas and deep hemorrhage in body cavities, muscles and joints. A four-month-old male Boxer was presented to the Veterinary Hospital at the School of Veterinary Medicine and Animal Science in Botucatu with excessive bleeding due to an incision made three days prior by another veterinarian to drain a local hematoma. Laboratory results showed platelet count within the reference range, as well as prolonged whole blood clotting and activated partial thromboplastin times. FVIII activity was 0,96%, which characterizes the most severe degree of hemophilia A.
Resumo:
Chemodectomas are neoplasms originated from chemoreceptors mainly present on the aortic and carotid bodies. The etiology of this kind of tumor is related to genetic factors and chronic hypoxia. Brachycephalic breeds such as Boxer and Boston Terrier are predisposed to develop this neoplasia. This article reports the case of a 10-year-old female Boxer presented to the Veterinary Hospital of the Veterinary Medicine and Animal Science School in Botucatu with a two-day history of fatigue, exercise intolerance and dyspnea. Clinical signs, in association with radiographic and ultrasonographic findings, suggested a heart-base tumor. The worsening of the case led the owner to choose for euthanasia. Necropsy revealed a mass at the heart base adhered to the aortic body, and microscopic evaluation confirmed the diagnosis of chemodectoma.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The diagnosis of various diseases has become more accessible and accurate with the rapid development of imaging modalities aiming to assist in medical diagnosis, and thereby in veterinary medicine. Different diagnostic imaging modalities such as ultrasonography, computed tomography, magnetic resonance imaging and scintigraphy can be performed to obtain information about thyroid diseases, each one with advantages and disadvantages, depending on the thyroid disease in question. Diagnostic imaging is a tool that not only assists in the diagnosis, but also helps treatment and assessment of prognosis of thyroid diseases. The aim of this article is to discuss the limitations and benefits of each diagnostic imaging modality available in the veterinary medical field, and also to present the newest diagnostic imaging modalities in order to maximize and make more accurate diagnosis of thyroid diseases.
Resumo:
In veterinary medicine, the same clinician usually follows an animal from birth to old age, whereas in human medicine different specialists are required. It is therefore essential that veterinarians know the normal imaging, biochemical, hematological and physical exam values for younglings, which differ significantly from those of adults of the same species. Abdominal radiographies of young animals are poorly defined due to differences in tissue constitution in relation to adults. These same factors, however, substantially improve sonographic images of the region. Nonetheless, the interpretation of B-mode sonographic findings in puppies is difficult due to the lack of information about the normal parameters in this phase of life. The objective of this study was to compile information about peculiarities of abdominal B-mode ultrasonography in puppies and kittens.
Resumo:
The evidences of efficiency and the relation of cost-benefit of therapy are obtained with revisions developed from primary studies, which includes descriptive, analytical, retrospective and prospective. This is a retrospective survey from the Acupuncture Clinic from the Faculty of Veterinary Medicine and Animal Science, S„o Paulo State University, Botucatu, Brazil from 1998 to 2009. Acupuncture efficacy, clinical evolution, the need or not of complementary therapies to acupuncture and the patient profile were evaluated in 1137 clinical charts. The main diseases presented by attended patients involve neurological and musculoskeletal problems. The majority of the patients are dogs and presents chronic diseases or low-response to usual therapies (allopathic). This prevalence is probably due to acupuncture efficacy in disc disease. The poor compliance to acupuncture treatment can be related the patient profile: animals that did not benefit from pharmacological or surgical recommended procedures. Acupuncture was the first choice for almost half (47%) of the patients.
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Pós-graduação em Medicina Veterinária - FMVZ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Monitoring of the kinetics of production of serum antibodies to multiple mycobacterial antigens can be useful as a diagnostic tool for the detection of Mycobacterium bovis infection as well as for the characterization of disease progression and the efficacy of intervention strategies in several species. The humoral immune responses to multiple M. bovis antigens by white-tailed deer vaccinated with BCG orally via a lipid-formulated bait (n = 5), orally in liquid form (n = 5), and subcutaneously (n = 6) were evaluated over time after vaccination and after experimental challenge with virulent M. bovis and were compared to the responses by unvaccinated deer (n = 6). Antibody responses were evaluated by using a rapid test (RT), a multiantigen print immunoassay (MAPIA), a lipoarabinomannan enzyme-linked immunosorbent assay (LAM-ELISA), and immunoblotting to whole-cell sonicate and recombinant antigen MPB83. MAPIA and RT detected minimal to no antibody responses over those at the baseline to multiple M. bovis antigens in vaccinated white-tailed deer after challenge. This was in contrast to the presence of more readily detectable antibody responses in nonvaccinated deer with more advanced disease. The LAM-ELISA results indicated an overall decrease in the level of production of detectable antibodies against lipoarabinomannan-enriched mycobacterial antigen in vaccinated animals compared to that in nonvaccinated animals after challenge. Immunoblot data were inconsistent but did suggest the occurrence of unique antibody responses by certain vaccinated groups to Ag85 and HSP70. These findings support further research toward the improvement and potential use of antibody-based assays, such as MAPIA, RT, and LAM-ELISA, as tools for the antemortem assessment of disease progression in white-tailed deer in both experimental and field vaccine trials.
Resumo:
Tuberculosis, caused by Mycobacterium bovis, was first diagnosed in African buffalo in South Africa’s Kruger National Park in 1990. Over the past 15 years the disease has spread northwards leaving only the most northern buffalo herds unaffected. Evidence suggests that 10 other small and large mammalian species, including large predators, are spillover hosts. Wildlife tuberculosis has also been diagnosed in several adjacent private game reserves and in the Hluhluwe-iMfolozi Park, the third largest game reserve in South Africa. The tuberculosis epidemic has a number of implications, for which the full effect of some might only be seen in the long-term. Potential negative long-term effects on the population dynamics of certain social animal species and the direct threat for the survival of endangered species pose particular problems for wildlife conservationists. On the other hand, the risk of spillover infection to neighboring communal cattle raises concerns about human health at the wildlife–livestock–human interface, not only along the western boundary of Kruger National Park, but also with regards to the joint development of the Greater Limpopo Transfrontier Conservation Area with Zimbabwe and Mozambique. From an economic point of view, wildlife tuberculosis has resulted in national and international trade restrictions for affected species. The lack of diagnostic tools for most species and the absence of an effective vaccine make it currently impossible to contain and control this disease within an infected free-ranging ecosystem. Veterinary researchers and policy-makers have recognized the need to intensify research on this disease and the need to develop tools for control, initially targeting buffalo and lion.
Resumo:
Numerous species of mammals are susceptible to Mycobacterium bovis, the causative agent of bovine tuberculosis (TB). Several wildlife hosts have emerged as reservoirs of M. bovis infection for domestic livestock in different countries. In the present study, blood samples were collected from Eurasian badgers (n = 1532), white-tailed deer (n = 463), brushtail possums (n = 129), and wild boar (n = 177) for evaluation of antibody responses to M. bovis infection by a lateral-flow rapid test (RT) and multiantigen print immunoassay (MAPIA). Magnitude of the antibody responses and antigen recognition patterns varied among the animals as determined by MAPIA; however, MPB83 was the most commonly recognized antigen for each host studied. Other seroreactive antigens included ESAT-6, CFP10, and MPB70. The agreement of the RT with culture results varied from 74% for possums to 81% for badgers to 90% for wild boar to 97% for white-tailed deer. Small numbers of wild boar and deer exposed to M. avium infection or paratuberculosis, respectively, did not cross-react in the RT, supporting the high specificity of the assay. In deer, whole blood samples reacted similarly to corresponding serum specimens (97% concordance), demonstrating the potential for field application. As previously demonstrated for badgers and deer, antibody responses to M. bovis infection in wild boar were positively associated with advanced disease. Together, these findings suggest that a rapid TB assay such as the RT may provide a useful screening tool for certain wildlife species that may be implicated in the maintenance and transmission of M. bovis infection to domestic livestock.
Resumo:
Bovine tuberculosis, caused by infection with Mycobacterium bovis, is a re-emerging zoonotic disease. It has staged a comeback by establishing infections in wildlife and cattle, creating the potential for human disease in locations where it was thought to be under control. In northwestern Minnesota, infected cattle and white-tailed deer were first discovered in 2005. A major bovine tuberculosis eradication campaign is underway in the state, with multiple efforts employed to control M. bovis infection in both cattle and deer populations. In order to effectively eradicate bovine tuberculosis in Minnesota, there is a need for better understanding of the factors that increase the risk of deer and cattle interacting in a way that facilitates tuberculosis transmission. By reducing the risk of disease transmission within the animal populations, we will also reduce the risk that bovine tuberculosis will again become a common disease in human populations. The purpose of this study is to characterize the risk of interactions between cattle and white-tailed deer in northern Minnesota in order to prevent M. bovis transmission. A survey originally developed to assess deer-cattle interactions in Michigan was modified for use in Minnesota, introducing a scoring method to evaluate the areas of highest priority at risk of potential deer-cattle interaction. The resulting semi-quantitative deer-cattle interaction risk assessment was used at 53 cattle herds located in the region adjacent to the bovine tuberculosis “Core Area”. Two evaluators each scored the farm separately, and then created a management plan for the farm that prioritized the areas of greatest risk for deer-cattle interactions. Herds located within the “Management Zone” were evaluated by Minnesota Board of Animal Health staff, and results from these surveys were used as a point of comparison.
Resumo:
Mycobacterium bovis infects the wildlife species badgers Meles meles who are linked with the spread of the associated disease tuberculosis (TB) in cattle. Control of livestock infections depends in part on the spatial and social structure of the wildlife host. Here we describe spatial association of M. bovis infection in a badger population using data from the first year of the Four Area Project in Ireland. Using second-order intensity functions, we show there is strong evidence of clustering of TB cases in each the four areas, i.e. a global tendency for infected cases to occur near other infected cases. Using estimated intensity functions, we identify locations where particular strains of TB cluster. Generalized linear geostatistical models are used to assess the practical range at which spatial correlation occurs and is found to exceed 6 in all areas. The study is of relevance concerning the scale of localized badger culling in the control of the disease in cattle.