926 resultados para Ägypten, Islam, Sufismus, Heilige, Heiligenverehrung, heilige Orte
Resumo:
The renovation of biomass waste in the form of date seed waste into activated carbon and biofuel by fixed bed pyrolysis reactor has been focused in this study to obtain gaseous, liquid, and solid products. The date seed in particle form is pyrolysed in an externally heated fixed bed reactor with nitrogen as the carrier gas. The reactor is heated from 400◦C to 600◦C. A maximum liquid yield of 50wt.% and char of 30wt.% are obtained at a reactor bed temperature of 500◦C with a running time of 120 minutes. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 28.636 MJ/kg which is significantly higher than other biomass derived. Decolonization of 85–97% is recorded for the textile effluent and 75–90% for the tannery effluent, in all cases decreasing with temperature increase. Good adsorption capacity of the prepared activated carbon in case of diluted textile and tannery effluent was found.
Resumo:
The conversion of biomass waste in the form of date seed into pyrolysis oil by fixed bed pyrolysis reactor has been taken into consideration in this study. A fixed bed pyrolysis has been designed and fabricated for obtaining liquid fuel from these date seeds. The major component of the system are fixed bed pyrolysis reactor, liquid condenser and liquid collector. The date seed in particle form is pyrolysed in an externally heated 7.6 cm diameter and 46 cm high fixed bed reactor with nitrogen as the carrier gas. The reactor is heated by means of a biomass source cylindrical heater from 4000C to 6000C. The products are oil, char and gas. The reactor bed temperature, running time and feed particle size are considered as process parameters. The parameters are found to influence the product yield significantly. A maximum liquid yield of 50 wt.% is obtained at a reactor bed temperature of 5000 C for a feed size volume of 0.11- 0.20 cm3 with a running time of 120 minutes. The pyrolysis oil obtained at this optimum process conditions are analyzed for some fuel properties and compared with some other biomass derived pyrolysis oils and also with conventional fuels. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 28.636 MJ/kg which is significantly higher than other biomass derived pyrolysis oils.
Design and construction of fixed bed pyrolysis system and plum seed pyrolysis for bio-oil production
Resumo:
This work investigated the production of bio oil from plum seed (Zyziphus jujuba) by fixed bed pyrolysis technology. A fixed bed pyrolysis system has been designed and fabricated for production of bio oil. The major components of the system are: fixed bed reactor, liquid condenser and liquid collector. Nitrogen gas was used to maintain the inert atmosphere in the reactor where the pyrolysis reaction takes place. The feedstock considered in this study is plum seed as it is available waste material in Bangladesh. The reactor is heated by means of a cylindrical biomass external heater. Rice husk was used as the energy source. The products are oil, char and gas. The parameters varied are reactor bed temperature, running time and feed particle size. The parameters are found to influence the product yields significantly. The maximum liquid yield of 39 wt% at 5200C for a feed particle size of 2.36-4.75 mm and a gas flow rate of 8 liter/min with a running time of 120 minute. The pyrolysis oil obtained at these optimum process conditions are analyzed for some of their properties as an alternative fuel. The density of the liquid was closer with diesel. The viscosity of the plum seed liquid was lower than that of the conventional fuels. The calorific value of the pyrolysis oil is one half of the diesel fuel.
Resumo:
The conversion of tamarind seeds into pyrolytic oil by fixed bed fire-tube heating reactor has been taken into consideration in this study. The major components of the system were fixed bed fire-tube heating reactor, liquid condenser and collectors. The raw and crushed tamarind seed in particle form was pyrolized in an electrically heated 10 cm diameter and 27 cm high fixed bed reactor. The products are oil, char and gases. The parameters varied were reactor bed temperature, running time, gas flow rate and feed particle size. The parameters were found to influence the product yields significantly. The maximum liquid yield was 45 wt% at 4000C for a feed size of 1.07cm3 at a gas flow rate of 6 liter/min with a running time of 30 minute. The pyrolysis oil was obtained at these optimum process conditions were analyzed for physical and chemical properties to be used as an alternative fuel.
Resumo:
In this study available solid tire wastes in Bangladesh were characterized through proximate and ultimate analyses, gross calorific values and thermogravimetric analysis to investigate their suitability as feedstock for thermal recycling by pyrolysis technology. A new approach in heating system, fixedbed fire-tube heating pyrolysis reactor has been designed and fabricated for the recovery of liquid hydrocarbons from solid tire wastes. The tire wastes were pyrolysed in the internally heated fixed-bed fire-tube heating reactor and maximum liquid yield of 46-55 wt% of solid tire waste was obtained at a temperature of 475 oC, feed size 4 cm3, with a residence time of 5 s under N2 atmosphere. The liquid products were characterized by physical properties, elemental analysis, FT-IR, 1H-NMR, GC MS techniques and distillation. The results show that the liquid products are comparable to petroleum fuels whereas fractional distillations and desulphurization are essential to be used as alternative for diesel engine fuels.
Resumo:
Among various thermo-chemical conversion processes, pyrolysis is considered as an emerging technology for liquid oil production. The conversion of biomass waste in the form of plum seed into pyrolysis oil by fixed bed pyrolysis reactor has been taken into consideration in this study. A fixed bed pyrolysis has been designed and fabricated for obtaining liquid fuel from this plum seeds. The major component of the system are fixed bed pyrolysis reactor, liquid condenser and liquid collectors. The plum seed in particle form is pyrolysed in an externally heated 7.6 cm diameter and 46 cm high fixed bed reactor with nitrogen as the carrier gas. The reactor is heated by means of a biomass source cylindrical heater from 4000C to 6000C. The products are oil, char and gas. The reactor bed temperature, running time and feed particle size are considered as process parameters. The parameters are found to influence the product yield significantly. A maximum liquid yield of 39 wt% of biomass feed is obtained with particle size of 2.36-4.75 mm at a reactor bed temperature of 520oC with a running time of 120 minutes. The pyrolysis oil obtained at this optimum process conditions are analyzed for some fuel properties and compared with some other biomass derived pyrolysis oils and conventional fuels. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 22.39 MJ/kg which is higher than other biomass derived pyrolysis oils.
Resumo:
Nicotine addiction remains the leading cause of death and disease in developed and developing nations and a major cause of mortality around the world. Currently, nicotine replacement therapies (NRTs), bupropion, and varenicline are approved by the regulatory agencies as first-line treatments for nicotine addiction. Emerging evidence indicates that varenicline and bupropion have some therapeutic limitations for treating nicotine addiction with oral route of administration. Thus, continued investigation of innovative drug delivery for nicotine addiction remains a critical priority. This review will discuss some novel strategies and future directions for pulmonary drug delivery, an emerging route of administration for smoking cessation. It is anticipated that the advancement of knowledge on pulmonary drug delivery will provide better management for nicotine addiction and other addictive disorders.
Resumo:
Pulmonary drug delivery is the focus of much research and development because of its great potential to produce maximum therapeutic benefit. Among the available options the dry powder inhaler (DPI) is the preferred device for the treatment of an increasingly diverse number of diseases. However, as drug delivery from a DPI involves a complicated set of physical processes and the integration of drug formulations, device design and patient usage, the engineering development of this medical technology is proving to be a great challenge. Currently there is large range of devices that are either available on the market or under development, however, none exhibit superior clinical efficacy. A major concern is the inter- and intra-patient variability of the drug dosage delivered to the deep lungs. The extent of variability depends on the drug formulation, the device design and the patient’s inhalation profile. This article reviews recent advances in DPI technology and presents the key factors which motivate and constrain the successful engineering of a universal, patient-independent DPI that is capable of efficient, reliable and repeatable drug delivery. A strong emphasis is placed on the physical processes of drug powder aerosolisation, deagglomeration, and dispersion and on the engineering of formulations and inhalers that can optimise these processes.
Resumo:
The renovation of biomass waste in the form of Mahogany seed waste into bio-fuel as well as activated carbon by fixed bed pyrolysis reactor has been taken into consideration in this study. The mahogany seed in particle form is pyrolyzed in an enormously heated fixed bed reactor with nitrogen as the carrier gas. The reactor is heated from 4000C to 6000C using a external heater in which rice husk and charcoal are used as the heater biomass fuel. Reactor bed temperature, running time and feed particle size have been varied to get the optimum operating conditions of the system. The parameters are found to influence the product yields to a large extent. A maximum liquid and char yield are 49 wt. % and 35 wt. % respectively obtained at a reactor bed temperature 5000C when the running time is 90 minutes. Acquired pyrolyzed oil at these optimal process conditions were analyzed for some of their properties as an alternative fuel. The oil possesses comparable flame temperature, favorable flash point and reasonable viscosity along with somewhat higher density. The kinematic viscosity of the derived fuel is 3.8 cSt and density is 1525 kg/m3. The higher calorific value is found 32.4 MJ/kg which is significantly higher than other biomass derived fuel. Moderate adsorption capacity of the prepared activated carbon in case of methyl blue & tea water was also revealed.
Resumo:
The book probes and examines traditional sources of royal power and control, as well as indigenous socio-political systems in the Malay world. It is focused on the north-western Malaysian Sultanate of Kedah which is acknowledged as the oldest unbroken independent kingship line in the ‘Malay and Islamic world’ with 1,000 years of history. Little scholarly attention has been paid to its pre-modern history, society, religion, system of government and unique geographic situation, potentially controlling both land and sea lines of communication into the remainder of Southeast Asia. It will thus provide the first comprehensive treatment in English, or other languages, on Kedah’s pre-modern and nineteenth century historiography and can provide a foundation for comparative studies of the various Malay states which is presently lacking. The proposed book also sheds much needed light on a range of important topics in Malay history including: Kedah and the northern Melaka Straits history, colonial expansion and rivalry, Southeast Asian history and politics, interregional migration and the influence of the sea peoples or orang laut, traditional Malay socio-political and economic life, Islamic influences and the course of Thai-Malay relations. The book attempts to offer a new understanding, not only of Kedah, but of the political and cultural development of the entire Malay world and of its relationships with the broader forces in both its continental and maritime settings. It argues that Kedah does not seem to follow, and in fact, often seems to contradict what has been commonly been accepted as the “typical model” of the traditional Malay state. Thus it concludes that the ruling dynasty has historically exploited a wide range of unique environmental conditions, local traditions, global spiritual trends and economic forces to preserve and strengthen its political position. The scope and theme of book The Kedah Sultanate is the oldest unbroken independent kingship lines in the “Malay world” with 1,000 years of history, and arguably one of the oldest in the Islamic world. In this study I examine key geopolitical and spiritual attributes of Malay kingship that have traditionally cemented the ruler, the peoples, and the environment. Brief description of the primary audience for the book: There is little written in English or Malay on Kedah’s pre twentieth century history. The available sources only look at certain aspects of Kedah’s history, are outdated or are confined to a specific period often outside the scope of the book. It is therefore anticipated that the readership and market for the book includes: • Scholars of Southeast Asian history, Islam, kingship, trade. • Academics & Historians (including: Asian, Thai history, Islamic, Maritime, Persian, South Asian, Southeast Asian and Colonial) • Libraries • Students, particularly those in Malaysia (especially the states of Kedah, Perlis and Penang), Thailand and Singapore. • Universities • Scholars and students in Political Science & International Relations
Resumo:
Female genital mutilation (FGM) is a cultural practice involving the deliberate, non-therapeutic physical modification of young girls’ genitalia. FGM can take several forms, ranging from smaller incisions, to removal of the clitoris and labia, and narrowing or even closing of the vagina. FGM predates and has no basis in the Koran, or any other religious text. Rather, it is a cultural tradition, particularly common in Islamic societies in regions of Africa, motivated by a patriarchal society’s desire to control female bodies and lives. The primary reason for this desire for control is to ensure virginity at marriage, thereby preserving family honour, within a patriarchal social structure where females’ value as persons is intrinsically connected to, and limited to, their worth as virgin brides. Recent efforts at legal prohibition and practical eradication in a growing number of African nations mark a significant turning point in how societies treat females. This shift in cultural power has been catalysed by a concern for female health, but it has also been motivated by an impulse to promote the human rights of girls and women. Although FGM remains widely practiced and there is much progress yet to be made before its eradication, the rights-based approach which has grown in strength embodies a marked shift in cultural power which reflects progress in women’s and children’s rights in the Western world, but which is now being applied in a different cultural context. This chapter reviews the nature of FGM, its prevalence, and health consequences. It discusses recent legal, cultural and practical developments, especially in African nations. Finally, this chapter raises the possibility that an absolute human right against FGM may emerge.
Resumo:
Road traffic crashes have emerged as a major health problem around the world. Road crash fatalities and injuries have been reduced significantly in developed countries, but they are still an issue in low and middle-income countries. The World Health Organization (WHO, 2009) estimates that the death toll from road crashes in low- and middle-income nations is more than 1 million people per year, or about 90% of the global road toll, even though these countries only account for 48% of the world's vehicles. Furthermore, it is estimated that approximately 265,000 people die every year in road crashes in South Asian countries and Pakistan stands out with 41,494 approximately deaths per year. Pakistan has the highest rate of fatalities per 100,000 population in the region and its road crash fatality rate of 25.3 per 100,000 population is more than three times that of Australia's. High numbers of road crashes not only cause pain and suffering to the population at large, but are also a serious drain on the country's economy, which Pakistan can ill-afford. Most studies identify human factors as the main set of contributing factors to road crashes, well ahead of road environment and vehicle factors. In developing countries especially, attention and resources are required in order to improve things such as vehicle roadworthiness and poor road infrastructure. However, attention to human factors is also critical. Human factors which contribute to crashes include high risk behaviours like speeding and drink driving, and neglect of protective behaviours such as helmet wearing and seat belt wearing. Much research has been devoted to the attitudes, beliefs and perceptions which contribute to these behaviours and omissions, in order to develop interventions aimed at increasing safer road use behaviours and thereby reducing crashes. However, less progress has been made in addressing human factors contributing to crashes in developing countries as compared to the many improvements in road environments and vehicle standards, and this is especially true of fatalistic beliefs and behaviours. This is a significant omission, since in different cultures in developing countries there are strong worldviews in which predestination persists as a central idea, i.e. that one's life (and death) and other events have been mapped out and are predetermined. Fatalism refers to a particular way in which people regard the events that occur in their lives, usually expressed as a belief that an individual does not have personal control over circumstances and that their lives are determined through a divine or powerful external agency (Hazen & Ehiri, 2006). These views are at odds with the dominant themes of modern health promotion movements, and present significant challenges for health advocates who aim to avert road crashes and diminish their consequences. The limited literature on fatalism reveals that it is not a simple concept, with religion, culture, superstition, experience, education and degree of perceived control of one's life all being implicated in accounts of fatalism. One distinction in the literature that seems promising is the distinction between empirical and theological fatalism, although there are areas of uncertainty about how well-defined the distinction between these types of fatalism is. Research into road safety in Pakistan is scarce, as is the case for other South Asian countries. From the review of the literature conducted, it is clear that the descriptions given of the different belief systems in developing countries including Pakistan are not entirely helpful for health promotion purposes and that further research is warranted on the influence of fatalism, superstition and other related beliefs in road safety. Based on the information available, a conceptual framework is developed as a means of structuring and focusing the research and analysis. The framework is focused on the influence of fatalism, superstition, religion and culture on beliefs about crashes and road user behaviour. Accordingly, this research aims to provide an understanding of the operation of fatalism and related beliefs in Pakistan to assist in the development and implementation of effective and culturally appropriate interventions. The research examines the influence of fatalism, superstition, religious and cultural beliefs on risky road use in Pakistan and is guided by three research questions: 1. What are the perceptions of road crash causation in Pakistan, in particular the role of fatalism, superstition, religious and cultural beliefs? 2. How does fatalism, superstition, and religious and cultural beliefs influence road user behaviour in Pakistan? 3. Do fatalism, superstition, and religious and cultural beliefs work as obstacles to road safety interventions in Pakistan? To address these questions, a qualitative research methodology was developed. The research focused on gathering data through individual in-depth interviewing using a semi-structured interview format. A sample of 30 participants was interviewed in Pakistan in the cities of Lahore, Rawalpindi and Islamabad. The participants included policy makers (with responsibility for traffic law), experienced police officers, religious orators, professional drivers (truck, bus and taxi) and general drivers selected through a combination of purposive, criterion and snowball sampling. The transcripts were translated from Urdu and analysed using a thematic analysis approach guided by the conceptual framework. The findings were divided into four areas: attribution of crash causation to fatalism; attribution of road crashes to beliefs about superstition and malicious acts; beliefs about road crash causation linked to popular concepts of religion; and implications for behaviour, safety and enforcement. Fatalism was almost universally evident, and expressed in a number of ways. Fate was used to rationalise fatal crashes using the argument that the people killed were destined to die that day, one way or another. Related to this was the sense of either not being fully in control of the vehicle, or not needing to take safety precautions, because crashes were predestined anyway. A variety of superstitious-based crash attributions and coping methods to deal with road crashes were also found, such as belief in the role of the evil eye in contributing to road crashes and the use of black magic by rivals or enemies as a crash cause. There were also beliefs related to popular conceptions of religion, such as the role of crashes as a test of life or a source of martyrdom. However, superstitions did not appear to be an alternative to religious beliefs. Fate appeared as the 'default attribution' for a crash when all other explanations failed to account for the incident. This pervasive belief was utilised to justify risky road use behaviour and to resist messages about preventive measures. There was a strong religious underpinning to the statement of fatalistic beliefs (this reflects popular conceptions of Islam rather than scholarly interpretations), but also an overlap with superstitious and other culturally and religious-based beliefs which have longer-standing roots in Pakistani culture. A particular issue which is explored in more detail is the way in which these beliefs and their interpretation within Pakistani society contributed to poor police reporting of crashes. The pervasive nature of fatalistic beliefs in Pakistan affects road user behaviour by supporting continued risk taking behaviour on the road, and by interfering with public health messages about behaviours which would reduce the risk of traffic crashes. The widespread influence of these beliefs on the ways that people respond to traffic crashes and the death of family members contribute to low crash reporting rates and to a system which appears difficult to change. Fate also appeared to be a major contributing factor to non-reporting of road crashes. There also appeared to be a relationship between police enforcement and (lack of) awareness of road rules. It also appears likely that beliefs can influence police work, especially in the case of road crash investigation and the development of strategies. It is anticipated that the findings could be used as a blueprint for the design of interventions aimed at influencing broad-spectrum health attitudes and practices among the communities where fatalism is prevalent. The findings have also identified aspects of beliefs that have complex social implications when designing and piloting driver intervention strategies. By understanding attitudes and behaviours related to fatalism, superstition and other related concepts, it should be possible to improve the education of general road users, such that they are less likely to attribute road crashes to chance, fate, or superstition. This study also underscores the understanding of this issue in high echelons of society (e.g., policy makers, senior police officers) as their role is vital in dispelling road users' misconceptions about the risks of road crashes. The promotion of an evidence or scientifically-based approach to road user behaviour and road safety is recommended, along with improved professional education for police and policy makers.
Resumo:
Background: The size of the carrier influences drug aerosolization from a dry powder inhaler (DPI) formulation. Lactose particles with irregular shape and rough surface in a variety of sizes are additionally used as carriers; however, contradictory reports exist regarding the effect of carrier size on the dispersion of drug. We examined the influence of the spherical particle size of the biodegradable polylactide-co-glycolide (PLGA) carrier on the aerosolization of a model drug, salbutamol sulphate (SS). Methods: Four different sizes (20-150 µm) of polymer carriers were fabricated using solvent evaporation technique and the dispersion of SS from these carriers was measured by a Twin Stage Impinger (TSI). The size and morphological properties of polymer carriers were determined by laser diffraction and SEM, respectively. Results: The FPF was found to increase from 5.6% to 21.3% with increasing carrier sizeup to150 µm. Conclusions: The aerosolization of drug increased linearly with the size of polymer carriers. For a fixed mass of drug particles in a formulation, the mass of drug particles per unit area of carriers is higher in formulations containing the larger carriers, which leads to an increase in the dispersion of drug due to the increased mechanical forces occurred between the carriers and the device walls.
Resumo:
Three dimensional conjugate heat transfer simulation of a standard parabolic trough thermal collector receiver is performed numerically in order to visualize and analyze the surface thermal characteristics. The computational model is developed in Ansys Fluent environment based on some simplified assumptions. Three test conditions are selected from the existing literature to verify the numerical model directly, and reasonably good agreement between the model and the test results confirms the reliability of the simulation. Solar radiation flux profile around the tube is also approximated from the literature. An in house macro is written to read the input solar flux as a heat flux wall boundary condition for the tube wall. The numerical results show that there is an abrupt variation in the resultant heat flux along the circumference of the receiver. Consequently, the temperature varies throughout the tube surface. The lower half of the horizontal receiver enjoys the maximum solar flux, and therefore, experiences the maximum temperature rise compared to the upper part with almost leveled temperature. Reasonable attributions and suggestions are made on this particular type of conjugate thermal system. The knowledge that gained so far from this study will be used to further the analysis and to design an efficient concentrator photovoltaic collector in near future.