880 resultados para zeta-average diameter
Surfactant-nanotube interactions in water and nanotube separation by diameter: atomistic simulations
Resumo:
A non-destructive sorting method to separate single-walled carbon nanotubes (SWNTs) by diameter was recently proposed. By this method, SWNTs are suspended in water by surfactant encapsulation and the separation is carried out by ultracentrifugation in a density gradient. SWNTs of different diameters are distributed according to their densities along the centrifuge tube. A mixture of two anionic surfactants, namely sodium dodecylsulfate (SDS) and sodium cholate (SC), presented the best performance in discriminating nanotubes by diameter. Unexpectedly, small diameter nanotubes are found at the low density part of the centrifuge tube. We present molecular dynamics studies of the water-surfactant-SWNT system to investigate the role of surfactants in the sorting process. We found that surfactants can actually be attracted towards the interior of the nanotube cage, depending on the relationship between the surfactant radius of gyration and the nanotube diameter. The dynamics at room temperature showed that, as the amphiphile moves to the hollow cage, water molecules are dragged together, thereby promoting the nanotube filling. The resulting densities of filled SWNT are in agreement with measured densities.
Resumo:
Deviations from the average can provide valuable insights about the organization of natural systems. The present article extends this important principle to the systematic identification and analysis of singular motifs in complex networks. Six measurements quantifying different and complementary features of the connectivity around each node of a network were calculated, and multivariate statistical methods applied to identify singular nodes. The potential of the presented concepts and methodology was illustrated with respect to different types of complex real-world networks, namely the US air transportation network, the protein-protein interactions of the yeast Saccharomyces cerevisiae and the Roget thesaurus networks. The obtained singular motifs possessed unique functional roles in the networks. Three classic theoretical network models were also investigated, with the Barabasi-Albert model resulting in singular motifs corresponding to hubs, confirming the potential of the approach. Interestingly, the number of different types of singular node motifs as well as the number of their instances were found to be considerably higher in the real-world networks than in any of the benchmark networks. Copyright (C) EPLA, 2009
Resumo:
This study evaluated the process of ablation produced by a Ti:Sapphire femtosecond laser under different average powers taking place at the enamel/dentin interface. Based on the geometry of ablated microcavities the effective intensity for ablation was obtained. This study shows the validity for the local effective intensity analysis and allows a quantification of the variation in the ablation geometry taking place at the interface of two naturally different materials. It shows that the variation of the diameter of the ablated region as a function of the cavity depth comes essentially from a mechanism of effective intensity attenuation, as a result of a series of complex effects. Additionally, our data are sufficient to predict that a discontinuity on the ablation profile will occur on the interface between two biological media: enamel-dentin, showing a suddenly jump on the ablated cavity dimensions.
Resumo:
The relationship between the structure and function of biological networks constitutes a fundamental issue in systems biology. Particularly, the structure of protein-protein interaction networks is related to important biological functions. In this work, we investigated how such a resilience is determined by the large scale features of the respective networks. Four species are taken into account, namely yeast Saccharomyces cerevisiae, worm Caenorhabditis elegans, fly Drosophila melanogaster and Homo sapiens. We adopted two entropy-related measurements (degree entropy and dynamic entropy) in order to quantify the overall degree of robustness of these networks. We verified that while they exhibit similar structural variations under random node removal, they differ significantly when subjected to intentional attacks (hub removal). As a matter of fact, more complex species tended to exhibit more robust networks. More specifically, we quantified how six important measurements of the networks topology (namely clustering coefficient, average degree of neighbors, average shortest path length, diameter, assortativity coefficient, and slope of the power law degree distribution) correlated with the two entropy measurements. Our results revealed that the fraction of hubs and the average neighbor degree contribute significantly for the resilience of networks. In addition, the topological analysis of the removed hubs indicated that the presence of alternative paths between the proteins connected to hubs tend to reinforce resilience. The performed analysis helps to understand how resilience is underlain in networks and can be applied to the development of protein network models.
Resumo:
The interactions between three different protein antigens and dioctadecyldimethylammonium bromide (DODAB) dispersed in aqueous solutions from probe sonication or adsorbed its one bilayer onto particles was comparatively investigated. The three model proteins were bovine serum albumin (BSA), purified 18 kDa/14 kDa antigens from Taenia crassiceps (18/14-Tcra) and a recombinant, heat-shock protein hsp-18 kDa from Mycobacterium leprae. Protein-DODAB complexes in water solution were characterized by dynamic light scattering for sizing and zeta-potential analysis. Cationic complexes (80-100 nm of mean hydrodynamic diameter) displayed sizes similar to those of DODAB bilayer fragments (BF) in aqueous solution and good colloid stability over a range of DODAB and protein concentrations. The amount of cationic lipid required for attaining zero of zeta-potential at a given protein amount depended on protein nature being smaller for 18 kDa/14 kDa antigens than for BSA. Mean diameters for DODAB/protein complexes increased, whereas zeta-potentials decreased with NaCl or protein concentration. In mice, weak IgG production but significant cellular immune responses were induced by the complexes in comparison to antigens alone or carried by aluminum hydroxide as shown from IgG in serum determined by ELISA, delayed type hypersensitivity reaction from footpad swelling tests and cytokines analysis. The novel cationic adjuvant/protein complexes revealed good colloid stability and potential for vaccine design at a reduced DODAB concentration. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Titanate nanotubes (TiNTs) were obtained by hydrothermal treatment of anatase powder in aqueous NaOH solution and then modified with 2,9,16,23-tertracarboxyl phthalocyanine copper(H) (CuPc). This hybrid organic inorganic nanoscopic system was characterized by X-ray diffraction, microscopy, and spectroscopy. Transmission electron microscopy (TEM) images of pure and modified TiNTs revealed multiwall structures with an average outer diameter of 9 nm and a length of several hundred nanometers. The tubular morphology of the TiNTs was covered with CuPc-film. The amount of CuPc adsorbed onto the TiNTs was quantified by electron paramagnetic resonance (EPR). Using the same technique and spin-trapping methodology, the photogeneration of reactive oxygen species (ROS) from the TiNTs was systematically investigated. A drastic quenching of photoactivity was observed in the CuPc/TiNT hybrid system. Electron transfer from excited CuPc states to the TiNT conduction band followed by electron recombination may be the cause of this quenching.
Resumo:
The stabilization of alumina suspensions is key to the development of high-performance materials for the ceramic industry, which has motivated extensive research into synthetic polymers used as stabilizers. In this study, mimosa tannin extract and a chitosan derivative, that is, macromolecules obtained from renewable resources, are shown to be promising to replace synthetic polymers, yielding less viscous suspensions with smaller particles and greater fluidity, that is, more homogeneous suspensions that may lead to better-quality products. The functional groups of tannin present in mimosa extract and N,N,N-trimethylchitosan (TMC) are capable of establishing interactions with the alumina surface, thus leading to repulsion between the particles mainly due to steric and electrosteric mechanisms, respectively. The stabilization of the suspension induced by either TMC or mimosa tannin was confirmed by a considerable decrease in viscosity and average particle size, in comparison with alumina suspensions without stabilizing agents. The viscosity/average particle size decreased by 49/84% and 52/87% for suspensions with TMC and mimosa tannin, respectively. In addition, the increase in the absolute zeta potential upon addition of either TMC or mimosa tannin extract, especially at high pHs, points to an increased stability of the suspension. The feasibility of using derivatives of macromolecules from renewable sources to stabilize aqueous alumina suspensions was therefore demonstrated. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 117: 58-66, 2010
Resumo:
The extracellular hemoglobin from Glossoscolex paulistus (HbGp) has a molecular mass of 3.6 M Da, It has a high oligomeric stability at pH 7.0 and low autoxidation rates, as compared to vertebrate hemoglobins. In this work, fluorescence and light scattering experiments were performed with the three oxidation forms of HbGp exposed to acidic pH. Our focus is on the HbGp stability at acidic pH and also on the determination of the isoelectric point (pI) of the protein. Our results show that the protein in the cyanomet form is more stable than in the other two forms, in the whole range. Our zeta-potential data are consistent with light scattering results. Average values apt obtained by different techniques were 5.6 +/- 0.5, 5.4 +/- 0.2 and 5.2 +/- 0.5 for the oxy, met, and cyanomet forms. Dynamic light scattering (DLS) experiments have shown that, at pH 6.0, the aggregation (oligomeric) state of oxy-, met- and cyanomet-HbGp remains the same as that at 7.0. The interaction between the oxy-HbGp and ionic surfactants at pH 5.0 and 6.0 was also monitored in the present study. At pH 5,0, below the protein pI, the effects of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium chloride (CTAC) are inverted when compared to pH 7.0. For CTAC, in acid pH 5.0, no precipitation is observed, while for SDS an intense light scattering appears due to a precipitation process. HbGp interacts strongly with the cationic surfactant at pH 7.0 and with the anionic one at pH 5.0. This effect is due to the predominance, in the protein surface, of residues presenting opposite charges to the surfactant headgroups. This information can be relevant for the development of extracellular hemoglobin-based artificial blood substitutes.
Resumo:
http://digitalcommons.colby.edu/atlasofmaine2006/1000/thumbnail.jpg
Resumo:
http://digitalcommons.colby.edu/atlasofmaine2006/1015/thumbnail.jpg
Resumo:
http://digitalcommons.colby.edu/atlasofmaine2005/1011/thumbnail.jpg
Resumo:
In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the (feasible) bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular, it is asymptotically equivalent to the conditional expectation, i.e., has an optimal limiting mean-squared error. We also develop a zeromean test for the average bias and discuss the forecast-combination puzzle in small and large samples. Monte-Carlo simulations are conducted to evaluate the performance of the feasible bias-corrected average forecast in finite samples. An empirical exercise based upon data from a well known survey is also presented. Overall, theoretical and empirical results show promise for the feasible bias-corrected average forecast.
Resumo:
In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular it delivers a zero-limiting mean-squared error if the number of forecasts and the number of post-sample time periods is sufficiently large. We also develop a zero-mean test for the average bias. Monte-Carlo simulations are conducted to evaluate the performance of this new technique in finite samples. An empirical exercise, based upon data from well known surveys is also presented. Overall, these results show promise for the bias-corrected average forecast.
Resumo:
In this paper, we propose a novel approach to econometric forecasting of stationary and ergodic time series within a panel-data framework. Our key element is to employ the (feasible) bias-corrected average forecast. Using panel-data sequential asymptotics we show that it is potentially superior to other techniques in several contexts. In particular, it is asymptotically equivalent to the conditional expectation, i.e., has an optimal limiting mean-squared error. We also develop a zeromean test for the average bias and discuss the forecast-combination puzzle in small and large samples. Monte-Carlo simulations are conducted to evaluate the performance of the feasible bias-corrected average forecast in finite samples. An empirical exercise, based upon data from a well known survey is also presented. Overall, these results show promise for the feasible bias-corrected average forecast.
Resumo:
Neste trabalho apresentamos três métodos distintos provando que S(n) = +1 X k=−1 (4k + 1)−n é um múltiplo racional de n para todos os inteiros n = 1, 2, 3, . . . O primeiro utiliza a teoria das função analíticas e funções geradoras. No segundo reduzimos o problema, via mudança de variável devida a E. Calabi, ao cálculo do volume de certos politopos em Rn enquanto que no terceiro usamos a teoria dos operadores integrais compactos. Cada um dos métodos tem um interesse intrínsico e está sujeito a generalizações para aplicações em novas situações.