999 resultados para western Atlantic Ocean


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In pursuance of previous studies water samples were taken in the Atlantic and Mediterranean during the 12th, 14th and 15th cruises of RV Mikhail Lomonosov in 1962-1964 to determine total and particulate organic carbon and permanganate oxidizability. Preliminary processing of the water samples was carried out in the normal manner in the on-board laboratory immediately after they had been taken: destruction of bicarbonates and carbonates by precise addition of acid (by alkalinity) and evaporation to dryness at 50-60°C. It is quite probable that the corresponding volatile fraction of organic matter is lost under these conditions. In discussion it was demonstrated that it may now be assumed that the carbon of the volatile fraction averages approximately 15% of total carbon, i.e., 15% of the sum of organic carbon of the volatile and nonvolatile fractions. Oxidizability was determined in all samples in the on-board laboratory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Devoted to studies of phosphatized rocks from the Kammu Seamount.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen-deficient waters in the ocean, generally referred to as oxygen minimum zones (OMZ), are expected to expand as a consequence of global climate change. Poor oxygenation is promoting microbial loss of inorganic nitrogen (N) and increasing release of sediment-bound phosphate (P) into the water column. These intermediate water masses, nutrient-loaded but with an N deficit relative to the canonical N:P Redfield ratio of 16:1, are transported via coastal upwelling into the euphotic zone. To test the impact of nutrient supply and nutrient stoichiometry on production, partitioning and elemental composition of dissolved (DOC, DON, DOP) and particulate (POC, PON, POP) organic matter, three nutrient enrichment experiments were conducted with natural microbial communities in shipboard mesocosms, during research cruises in the tropical waters of the southeast Pacific and the northeast Atlantic. Maximum accumulation of POC and PON was observed under high N supply conditions, indicating that primary production was controlled by N availability. The stoichiometry of microbial biomass was unaffected by nutrient N:P supply during exponential growth under nutrient saturation, while it was highly variable under conditions of nutrient limitation and closely correlated to the N:P supply ratio, although PON:POP of accumulated biomass generally exceeded the supply ratio. Microbial N:P composition was constrained by a general lower limit of 5:1. Channelling of assimilated P into DOP appears to be the mechanism responsible for the consistent offset of cellular stoichiometry relative to inorganic nutrient supply and nutrient drawdown, as DOP build-up was observed to intensify under decreasing N:P supply. Low nutrient N:P conditions in coastal upwelling areas overlying O2-deficient waters seem to represent a net source for DOP, which may stimulate growth of diazotrophic phytoplankton. These results demonstrate that microbial nutrient assimilation and partitioning of organic matter between the particulate and the dissolved phase are controlled by the N:P ratio of upwelled nutrients, implying substantial consequences for nutrient cycling and organic matter pools in the course of decreasing nutrient N:P stoichiometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the course of the voyages 9a and 9c (1967) and 19 (1970) of the RV "Meteor" samples of plankton and neuston have been taken in the area of the Great Meteor Seamount. The euphausiids of this material have been examined quantitatively as well as qualitatively in order to study the influence of the Great and Small Meteor Seamount on a vertically migrating group of plankton. 20 species could be identified. All stem from the surrounding deep water and belong to the tropical and subtropical fauna. On the plateau of the Great Meteor Seamount no indigenous species have been encountered and also the typical neritic species from the west coast off Africa are lacking. As for the euphausiids no relationships exist between the Great Meteor Seamount and the shelf area of West Africa. The dominant species around the Meteor Seamount were Euphausia brevii, Stylocheiron suhmii, E. hemigibba, S. longicorne and Thysanopoda subaequalis. Using the index of diversity (Simpson) distinct differences in the composition of species could be shown to exist between the plateau area of the Meteor Seamount and the surrounding sea. On the plateau of the Great Meteor Seamount the number of species was only 7, E. brevis and S. suhmii dominated. None of the species occurred in great numbers and none is adapted to the specific environmental conditions of the plateau of the Meteor Seamount. The fauna of the plateau is a depauperate one as compared with that of the surrounding sea. This can be explained by the fact that adult euphausiids require for their existence greater water depths than are found above the plateau of the Meteor Seamount.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An overview is presented of the current state of knowledge on paleo-ecological aspects of calcareous dinoflagellate resting cysts. Apart from literature-based information, a discussion of new results is also provided from Equatorial Atlantic surface plankton samples, surface sediment samples and Late Quaternary sediments from two gravity cores. With the aid of redundancy analysis statistics, variations in the calcareous cyst content of both cores are correlated to variations in total organic carbon (TOC). On a global scale, the calcareous cyst distribution in bottom sediments varies with latitude and inshore-offshore gradients. In the Equatorial Atlantic Ocean, enhanced calcareous cyst production can be observed in regions and time intervals with stratified, oligotrophic conditions in the upper water masses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Middle/late Miocene to early Pliocene sedimentary sequences along the continental margin of southwest Africa have changes that correspond to the carbonate crash (12-9 Ma) and biogenic bloom events (~7-4 Ma) described in the equatorial Pacific by Farrell et al. (1995, doi:10.2973/odp.proc.sr.138.143.1995). To explore the origins of these changes, we analyzed the carbon and coarse fraction contents of sediments from ODP Sites 1085, 1086, and 1087 at a time resolution of 5 to 30 kyr. Several major drops in CaCO3 concentration between 12 and 9 Ma are caused by dilution from major increases in clastic input from the Oranje River during global sea level regressions. Abundant pyrite crystals and good preservation of fish debris reflect low oxygenation of bottom/pore waters. Regional productivity was enhanced during the time equivalent to the carbonate crash period. Higher benthic/planktic foraminiferal ratios indicate that CaCO3 dissolution at Site 1085 peaked between 9 to 7 Ma, which was after the global carbonate crash. This period of enhanced dissolution suggests that Site 1085 was located within a low-oxygen water mass that dissolved CaCO3 more easily than North Atlantic Deep Water, which began to bathe this site at 7 Ma. At 7 to 6 Ma, the onset of the biogenic bloom, increases and variations in total organic carbon and benthic foraminiferal accumulation rates show that paleoproductivity increased significantly above values observed during the carbonate crash period and fluctuated widely. We attribute the late Miocene paleoproductivity increase off southwest Africa to ocean-wide increases in nutrient supply and delivery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concentratios of Cl-, Mg2+, Ca2+, and HCO3- ions were studied in rain waters and condensed atmospheric moisture above the Atlantic Ocean. Maximal number of samples was collected in the eastern tropical North Atlantic. Concentration of chloride ions ranged from 1 to 28 mg/l in rain waters (average 4.3 mg/l) and ranged from 0.3 to 2 mg/l in condensed atmospheric moisture with the average about one order of magnitude less than that for rain waters. Chloride normalized concentrations of magnesium and calcium are greater in rain waters and condensed atmospheric moisture than in ocean water due to more intensive subtraction of these ions as compared to chloride ions. Chloride normalized HCO3- concentration is one order of magnitude greater in atmospheric moisture than in seawater, possibly because of volatile component CO2 taking part in exchange between the ocean and the atmosphere.