899 resultados para uncertanin nonholonomic dynamic system
Resumo:
How do separate neural networks interact to support complex cognitive processes such as remembrance of the personal past? Autobiographical memory (AM) retrieval recruits a consistent pattern of activation that potentially comprises multiple neural networks. However, it is unclear how such large-scale neural networks interact and are modulated by properties of the memory retrieval process. In the present functional MRI (fMRI) study, we combined independent component analysis (ICA) and dynamic causal modeling (DCM) to understand the neural networks supporting AM retrieval. ICA revealed four task-related components consistent with the previous literature: 1) medial prefrontal cortex (PFC) network, associated with self-referential processes, 2) medial temporal lobe (MTL) network, associated with memory, 3) frontoparietal network, associated with strategic search, and 4) cingulooperculum network, associated with goal maintenance. DCM analysis revealed that the medial PFC network drove activation within the system, consistent with the importance of this network to AM retrieval. Additionally, memory accessibility and recollection uniquely altered connectivity between these neural networks. Recollection modulated the influence of the medial PFC on the MTL network during elaboration, suggesting that greater connectivity among subsystems of the default network supports greater re-experience. In contrast, memory accessibility modulated the influence of frontoparietal and MTL networks on the medial PFC network, suggesting that ease of retrieval involves greater fluency among the multiple networks contributing to AM. These results show the integration between neural networks supporting AM retrieval and the modulation of network connectivity by behavior.
Resumo:
All of us are taxed with juggling our inner mental lives with immediate external task demands. For many years, the temporary maintenance of internal information was considered to be handled by a dedicated working memory (WM) system. It has recently become increasingly clear, however, that such short-term internal activation interacts with attention focused on external stimuli. It is unclear, however, exactly why these two interact, at what level of processing, and to what degree. Because our internal maintenance and external attention processes co-occur with one another, the manner of their interaction has vast implications for functioning in daily life. The work described here has employed original experimental paradigms combining WM and attention task elements, functional magnetic resonance imaging (fMRI) to illuminate the associated neural processes, and transcranial magnetic stimulation (TMS) to clarify the causal substrates of attentional brain function. These studies have examined a mechanism that might explain why (and when) the content of WM can involuntarily capture visual attention. They have, furthermore, tested whether fundamental attentional selection processes operate within WM, and whether they are reciprocal with attention. Finally, they have illuminated the neural consequences of competing attentional demands. The findings indicate that WM shares representations, operating principles, and cognitive resources with externally-oriented attention.
Resumo:
Increasing atmospheric carbon dioxide (CO2) from anthropogenic sources is acidifying marine environments resulting in potentially dramatic consequences for the physical, chemical and biological functioning of these ecosystems. If current trends continue, mean ocean pH is expected to decrease by ~0.2 units over the next ~50 years. Yet, there is also substantial temporal variability in pH and other carbon system parameters in the ocean resulting in regions that already experience change that exceeds long-term projected trends in pH. This points to short-term dynamics as an important layer of complexity on top of long-term trends. Thus, in order to predict future climate change impacts, there is a critical need to characterize the natural range and dynamics of the marine carbonate system and the mechanisms responsible for observed variability. Here, we present pH and dissolved inorganic carbon (DIC) at time intervals spanning 1 hour to >1 year from a dynamic, coastal, temperate marine system (Beaufort Inlet, Beaufort NC USA) to characterize the carbonate system at multiple time scales. Daily and seasonal variation of the carbonate system is largely driven by temperature, alkalinity and the balance between primary production and respiration, but high frequency change (hours to days) is further influenced by water mass movement (e.g. tides) and stochastic events (e.g. storms). Both annual (~0.3 units) and diurnal (~0.1 units) variability in coastal ocean acidity are similar in magnitude to 50 year projections of ocean acidity associated with increasing atmospheric CO2. The environmental variables driving these changes highlight the importance of characterizing the complete carbonate system rather than just pH. Short-term dynamics of ocean carbon parameters may already exert significant pressure on some coastal marine ecosystems with implications for ecology, biogeochemistry and evolution and this shorter term variability layers additive effects and complexity, including extreme values, on top of long-term trends in ocean acidification.
Resumo:
Flexible cylindrical structures subjected to wind loading experience vibrations from periodic shedding of vortices in their wake. Vibrations become excessive when the natural frequencies of the cylinder coincide with the vortex shedding frequency. In this study, cylinder vibrations are transmitted to a beam inside the structure via dynamic magnifier system. This system amplifies the strain experienced by piezoelectric patches bonded to the beam to maximize the conversion from vibrational energy into electrical energy. Realworld applicability is tested using a wind tunnel to create vortex shedding and comparing the results to finite element modeling that shows the structural vibrational modes. A crucial part of this study is conditioning and storing the harvested energy, focusing on theoretical modeling, design parameter optimization, and experimental validation. The developed system is helpful in designing wind-induced energy harvesters to meet the necessity for novel energy resources.
Resumo:
SMARTFIRE is a fire field model based on an open architecture integrated CFD code and knowledge-based system. It makes use of the expert system to assist the user in setting up the problem specification and new computational techniques such as Group Solvers to reduce the computational effort involved in solving the equations. This paper concentrates on recent research into the use of artificial intelligence techniques to assist in dynamic solution control of fire scenarios being simulated using fire field modelling techniques. This is designed to improve the convergence capabilities of the software while further decreasing the computational overheads. The technique automatically controls solver relaxations using an integrated production rule engine with a blackboard to monitor and implement the required control changes during solution processing. Initial results for a two-dimensional fire simulation are presented that demonstrate the potential for considerable savings in simulation run-times when compared with control sets from various sources. Furthermore, the results demonstrate enhanced solution reliability due to obtaining acceptable convergence within each time step unlike some of the comparison simulations.
Resumo:
SMARTFIRE, an open architecture integrated CFD code and knowledge based system attempts to make fire field modeling accessible to non-experts in Computational Fluid Dynamics (CFD) such as fire fighters, architects and fire safety engineers. This is achieved by embedding expert knowledge into CFD software. This enables the 'black-art' associated with the CFD analysis such as selection of solvers, relaxation parameters, convergence criteria, time steps, grid and boundary condition specification to be guided by expert advice from the software. The user is however given the option of overriding these decisions, thus retaining ultimate control. SMARTFIRE also makes use of recent developments in CFD technology such as unstructured meshes and group solvers in order to make the CFD analysis more efficient. This paper describes the incorporation within SMARTFIRE of the expert fire modeling knowledge required for automatic problem setup and mesh generation as well as the concept and use of group solvers for automatic and manual dynamic control of the CFD code.
Resumo:
This paper proposes a vehicular control system architecture that supports self-configuration. The architecture is based on dynamic mapping of processes and services to resources to meet the challenges of future demanding use-scenarios in which systems must be flexible to exhibit context-aware behaviour and to permit customization. The architecture comprises a number of low-level services that provide the required system functionalities, which include automatic discovery and incorporation of new devices, self-optimisation to best-use the processing, storage and communication resources available, and self-diagnostics. The benefits and challenges of dynamic configuration and the automatic inclusion of users' Consumer Electronic (CE) devices are briefly discussed. The dynamic configuration and control-theoretic technologies used are described in outline and the way in which the demands of highly flexible dynamic configuration and highly robust operation are simultaneously met without compromise, is explained. A number of generic use-cases have been identified, each with several specific use-case scenarios. One generic use-case is described to provide an insight into the extent of the flexible reconfiguration facilitated by the architecture.
Resumo:
Polymer extrusion is a complex process and the availability of good dynamic models is key for improved system operation. Previous modelling attempts have failed adequately to capture the non-linearities of the process or prove too complex for control applications. This work presents a novel approach to the problem by the modelling of extrusion viscosity and pressure, adopting a grey box modelling technique that combines mechanistic knowledge with empirical data using a genetic algorithm approach. The models are shown to outperform those of a much higher order generated by a conventional black box technique while providing insight into the underlying processes at work within the extruder.
Resumo:
Structural and kinetic aspects of 2-D irreversible metal deposition under potentiostatic conditions are analyzed by means of dynamic Monte Carlo simulations employing embedded atom potentials for a model system. Three limiting models, all considering adatom diffusion, were employed to describe adatom deposition. The first model (A) considers adatom deposition on any free substrate site on the surface at the same rate. The second model (B) considers adatom deposition only on substrate sites which exhibit no neighboring sites occupied by adatoms. The third model (C) allows deposition at higher rates on sites presenting neighboring sites occupied by adatoms. Under the proper conditions, the coverage (theta) versus time (t) relationship for the three cases can be heuristically fitted to the functional form theta = 1 - exp(-betat(alpha)), where alpha and beta are parameters. We suggest that the value of the parameter alpha can be employed to distinguish experimentally between the three cases. While model A trivially delivers a = 1, models B and C are characterized by alpha 1, respectively.
Resumo:
The purpose of this paper is to derive the dynamical equations for the period vectors of a periodic system under constant external stress. The explicit starting point is Newton’s second law applied to halves of the system. Later statistics over indistinguishable translated states and forces associated with transport of momentum are applied to the resulting dynamical equations. In the final expressions, the period vectors are driven by the imbalance between internal and external stresses. The internal stress is shown to have both full interaction and kinetic-energy terms.
Resumo:
PEGS (Production and Environmental Generic Scheduler) is a generic production scheduler that produces good schedules over a wide range of problems. It is centralised, using search strategies with the Shifting Bottleneck algorithm. We have also developed an alternative distributed approach using software agents. In some cases this reduces run times by a factor of 10 or more. In most cases, the agent-based program also produces good solutions for published benchmark data, and the short run times make our program useful for a large range of problems. Test results show that the agents can produce schedules comparable to the best found so far for some benchmark datasets and actually better schedules than PEGS on our own random datasets. The flexibility that agents can provide for today's dynamic scheduling is also appealing. We suggest that in this sort of generic or commercial system, the agent-based approach is a good alternative.
Resumo:
University spin-off companies occupy a prominent position in both government and university policies and aspirations for the commercialization of university research for economic benefit at regional and national levels. However, most university spin-off companies start small and remain small, reflecting founder aspirations, capabilities, and resource endowments. Based on detailed analysis of university spin-offs in Northern Ireland, it is concluded that these companies are technology lifestyle businesses not dynamic high-growth potential start-ups, and it is suggested that the prominence given to spin-offs in the analysis of technology transfer and in discussions of the economic impacts of universities is misplaced.
Resumo:
A power and resource efficient ‘dynamic-range utilisation’ technique to increase operational capacity of DSP IP cores by exploiting redundancy in the data epresentation of sampled analogue input data, is presented. By cleverly partitioning dynamic-range into separable processing threads, several data streams are computed concurrently on the same hardware. Unlike existing techniques which act solely to reduce power consumption due to sign extension, here the dynamic range is exploited to increase operational capacity while still achieving reduced power consumption. This extends an existing system-level, power efficient framework for the design of low power DSP IP cores, which when applied to the design of an FFT IP core in a digital receiver system gives an architecture requiring 50% fewer multipliers, 12% fewer slices and 51%-56% less power.
Resumo:
In this paper, we provide experimental evidence to show that enhanced bit error rate (BER) performance is possible using a retrodirective array operating in a dynamically varying multipath environment. The operation of such a system will be compared to that obtained by a conventional nonretrodirective array. The ability of the array to recover amplitude shift keyed encoded data transmitted from a remote location whose position is not known a priori is described. In addition, its ability to retransmit data inserted at the retrodirective array back to a spatially remote beacon location whose position is also not known beforehand is also demonstrated. Comparison with an equivalent conventional fixed beam antenna array utilizing an identical radiating aperture arrangement to that of the retrodirective array are given. These show that the retrodirective array can effectively exploit the presence of time varying multipath in order to give significant reductions in BER over what can be otherwise achieved. Additionally, the retrodirective system is shown to be able to deliver low BER regardless of whether line of sight is present or absent.
Resumo:
Contemporary medical science is reliant upon the rational selection and utilization of devices, and therefore, an increasing need has developed for in vitro systems aimed at replicating the conditions to which urological devices will be subjected to during their use in vivo. We report the development and validation of a novel continuous flow encrustation model based on the commercially available CDC biofilm reactor. Proteus mirabilis-induced encrustation formation on test biomaterial sections under varying experimental parameters was analyzed by X-ray diffraction, infrared- and Raman spectroscopy and by scanning electron microscopy. The model system produced encrusted deposits similar to those observed in archived clinical samples. Results obtained for the system are highly reproducible with encrustation being rapidly deposited on test biomaterial sections. This model will have utility in the rapid screening of encrustation behavior of biomaterials for use in urological applications. (C) 2010 Wiley Periodicals. Inc. J Biomed Mater Res Part B: Appl Biomater 93B: 128-140, 2010