996 resultados para twice line frequency
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2008
Resumo:
PEEC, computational electromagnetics
Frequency of Cardiovascular Involvement in Familial Amyloidotic Polyneuropathy in Brazilian Patients
Resumo:
Background:Familial amyloidotic polyneuropathy (FAP) is a rare disease diagnosed in Brazil and worldwide. The frequency of cardiovascular involvement in Brazilian FAP patients is unknown.Objective:Detect the frequency of cardiovascular involvement and correlate the cardiovascular findings with the modified polyneuropathy disability (PND) score.Methods:In a national reference center, 51 patients were evaluated with clinical examination, electrocardiography (ECG), echocardiography (ECHO), and 24-hour Holter. Patients were classified according to the modified PND score and divided into groups: PND 0, PND I, PND II, and PND > II (which included PND IIIa, IIIb, and IV). We chose the classification tree as the statistical method to analyze the association between findings in cardiac tests with the neurological classification (PND).Results:ECG abnormalities were present in almost 2/3 of the FAP patients, whereas ECHO abnormalities occurred in around 1/3 of them. All patients with abnormal ECHO also had abnormal ECG, but the opposite did not apply. The classification tree identified ECG and ECHO as relevant variables (p < 0.001 and p = 0.08, respectively). The probability of a patient to be allocated to the PND 0 group when having a normal ECG was over 80%. When both ECG and ECHO were abnormal, this probability was null.Conclusions:Brazilian patients with FAP have frequent ECG abnormalities. ECG is an appropriate test to discriminate asymptomatic carriers of the mutation from those who develop the disease, whereas ECHO contributes to this discrimination.
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2008
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2009
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2010
Resumo:
The study of pod corn seems still of much importance from different points of view. The phylogenetical importance of the tunicate factor as a wild type relic gene has been recently discussed in much detail by MANGELSDORF and REEVES (1939), and by BRIEGER (1943, 1944a e b). Selection experiments have shown that the pleiotropic effect of the Tu factor can be modified very extensively (BRIEGER 1944a) and some of the forms thus obtained permitt comparison of male and female inflorescences in corn and related grasses. A detailed discussion of the botanical aspect shall be given shortly. The genetic apect, finally, is the subject of the present publication. Pod corn has been obtained twice: São Paulo Pod Corn and Bolivia Pod Corn. The former came from one half ear left in our laboratory by a student and belongs to the type of corn cultivated in the State of São Paulo, while the other belongs to the Andean group, and has been received both through Dr. CARDENAS, President of the University at Cochabamba, Bolivia, and through Dr. H. C. CUTLER, Harvard University, who collected material in the Andes. The results of the studies may be summarized as follows: 1) In both cases, pod corn is characterized by the presence of a dominant Tu factor, localized in the fourth chromosome and linked with sul. The crossover value differs somewhat from the mean value of 29% given by EMERSON, BEADLE and FRAZER (1935) and was 25% in 1217 plants for São Paulo Pod Corn and 36,5% in 345 plants for Bolivia Pod Corn. However not much importance should be attributed to the quantitative differences. 2) Segregation was completely normal in Bolivia Pod Corn while São Paulo Pod Corn proved to be heterozygous for a new com uma eliminação forte, funcionam apenas 8% em vez de 50%. Existem cerca de 30% de "jcrossing-over entre o gen doce (Su/su) e o fator gametofítico; è cerca de 5% entre o gen Tu e o fator gametofítico. A ordem dos gens no cromosômio IV é: Ga4 - Tu - Sul. 3) Using BRIEGER'S formulas (1930, 1937a, 1937b) the following determinations were made. a) the elimination of ga4 pollen tubes may be strong or weak. In the former case only about 8% and in the latter 37% of ga4 pollen tubes function, instead of the 50% expected in normal heterozygotes. b) There is about 30,4% crossing-over between sul and ga4 and 5,3% between Tu and ga3, the order of the factors beeing Su 1 - Tu - Ga4. 4) The new gametophyte factor differs from the two others factors in the same chromosome, causing competition between pollen tubes. The factor Gal, ocupies another locus, considerably to the left of Sul (EMERSON, BEADLE AND FRAZSER, 1935). The gen spl ocupies another locus and causes a difference of the size of the pollen grains, besides an elimination of pollen tubes, while no such differences were observed in the case of the new factor Ga4. 5) It may be mentioned, without entering into a detailed discussion, that it seems remarquable that three of the few gametophyte factors, so far studied in detail are localized in chromosome four. Actuality there are a few more known (BRIEGER, TIDBURY AND TSENG 1938), but only one other has been localized so far, Ga2, in chromosome five between btl and prl. (BRIEGER, 1935). 6) The fourth chromosome of corn seems to contain other pecularities still. MANGELSDORF AND REEVES (1939) concluded that it carries two translocations from Tripsacum chromosomes, and BRIEGER (1944b) suggested that the tu allel may have been introduced from a tripsacoid ancestor in substitution of the wild type gene Tu at the beginning of domestication. Serious disturbances in the segregation of fourth chromosome factors have been observed (BRIEGER, unpublished) in the hybrids of Brazilian corn and Mexican teosinte, caused by gametophytic and possibly zygotic elimination. Future studies must show wether there is any relation between the frequency of factors, causing gametophyte elimination and the presence of regions of chromosomes, tranfered either from Tripsacum or a related species, by translocation or crossing-over.
Resumo:
Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2011
Resumo:
The main object of the present paper consists in giving formulas and methods which enable us to determine the minimum number of repetitions or of individuals necessary to garantee some extent the success of an experiment. The theoretical basis of all processes consists essentially in the following. Knowing the frequency of the desired p and of the non desired ovents q we may calculate the frequency of all possi- ble combinations, to be expected in n repetitions, by expanding the binomium (p-+q)n. Determining which of these combinations we want to avoid we calculate their total frequency, selecting the value of the exponent n of the binomium in such a way that this total frequency is equal or smaller than the accepted limit of precision n/pª{ 1/n1 (q/p)n + 1/(n-1)| (q/p)n-1 + 1/ 2!(n-2)| (q/p)n-2 + 1/3(n-3) (q/p)n-3... < Plim - -(1b) There does not exist an absolute limit of precision since its value depends not only upon psychological factors in our judgement, but is at the same sime a function of the number of repetitions For this reasen y have proposed (1,56) two relative values, one equal to 1-5n as the lowest value of probability and the other equal to 1-10n as the highest value of improbability, leaving between them what may be called the "region of doubt However these formulas cannot be applied in our case since this number n is just the unknown quantity. Thus we have to use, instead of the more exact values of these two formulas, the conventional limits of P.lim equal to 0,05 (Precision 5%), equal to 0,01 (Precision 1%, and to 0,001 (Precision P, 1%). The binominal formula as explained above (cf. formula 1, pg. 85), however is of rather limited applicability owing to the excessive calculus necessary, and we have thus to procure approximations as substitutes. We may use, without loss of precision, the following approximations: a) The normal or Gaussean distribution when the expected frequency p has any value between 0,1 and 0,9, and when n is at least superior to ten. b) The Poisson distribution when the expected frequecy p is smaller than 0,1. Tables V to VII show for some special cases that these approximations are very satisfactory. The praticai solution of the following problems, stated in the introduction can now be given: A) What is the minimum number of repititions necessary in order to avoid that any one of a treatments, varieties etc. may be accidentally always the best, on the best and second best, or the first, second, and third best or finally one of the n beat treatments, varieties etc. Using the first term of the binomium, we have the following equation for n: n = log Riim / log (m:) = log Riim / log.m - log a --------------(5) B) What is the minimun number of individuals necessary in 01der that a ceratin type, expected with the frequency p, may appaer at least in one, two, three or a=m+1 individuals. 1) For p between 0,1 and 0,9 and using the Gaussean approximation we have: on - ó. p (1-p) n - a -1.m b= δ. 1-p /p e c = m/p } -------------------(7) n = b + b² + 4 c/ 2 n´ = 1/p n cor = n + n' ---------- (8) We have to use the correction n' when p has a value between 0,25 and 0,75. The greek letters delta represents in the present esse the unilateral limits of the Gaussean distribution for the three conventional limits of precision : 1,64; 2,33; and 3,09 respectively. h we are only interested in having at least one individual, and m becomes equal to zero, the formula reduces to : c= m/p o para a = 1 a = { b + b²}² = b² = δ2 1- p /p }-----------------(9) n = 1/p n (cor) = n + n´ 2) If p is smaller than 0,1 we may use table 1 in order to find the mean m of a Poisson distribution and determine. n = m: p C) Which is the minimun number of individuals necessary for distinguishing two frequencies p1 and p2? 1) When pl and p2 are values between 0,1 and 0,9 we have: n = { δ p1 ( 1-pi) + p2) / p2 (1 - p2) n= 1/p1-p2 }------------ (13) n (cor) We have again to use the unilateral limits of the Gaussean distribution. The correction n' should be used if at least one of the valors pl or p2 has a value between 0,25 and 0,75. A more complicated formula may be used in cases where whe want to increase the precision : n (p1 - p2) δ { p1 (1- p2 ) / n= m δ = δ p1 ( 1 - p1) + p2 ( 1 - p2) c= m / p1 - p2 n = { b2 + 4 4 c }2 }--------- (14) n = 1/ p1 - p2 2) When both pl and p2 are smaller than 0,1 we determine the quocient (pl-r-p2) and procure the corresponding number m2 of a Poisson distribution in table 2. The value n is found by the equation : n = mg /p2 ------------- (15) D) What is the minimun number necessary for distinguishing three or more frequencies, p2 p1 p3. If the frequecies pl p2 p3 are values between 0,1 e 0,9 we have to solve the individual equations and sue the higest value of n thus determined : n 1.2 = {δ p1 (1 - p1) / p1 - p2 }² = Fiim n 1.2 = { δ p1 ( 1 - p1) + p1 ( 1 - p1) }² } -- (16) Delta represents now the bilateral limits of the : Gaussean distrioution : 1,96-2,58-3,29. 2) No table was prepared for the relatively rare cases of a comparison of threes or more frequencies below 0,1 and in such cases extremely high numbers would be required. E) A process is given which serves to solve two problemr of informatory nature : a) if a special type appears in n individuals with a frequency p(obs), what may be the corresponding ideal value of p(esp), or; b) if we study samples of n in diviuals and expect a certain type with a frequency p(esp) what may be the extreme limits of p(obs) in individual farmlies ? I.) If we are dealing with values between 0,1 and 0,9 we may use table 3. To solve the first question we select the respective horizontal line for p(obs) and determine which column corresponds to our value of n and find the respective value of p(esp) by interpolating between columns. In order to solve the second problem we start with the respective column for p(esp) and find the horizontal line for the given value of n either diretly or by approximation and by interpolation. 2) For frequencies smaller than 0,1 we have to use table 4 and transform the fractions p(esp) and p(obs) in numbers of Poisson series by multiplication with n. Tn order to solve the first broblem, we verify in which line the lower Poisson limit is equal to m(obs) and transform the corresponding value of m into frequecy p(esp) by dividing through n. The observed frequency may thus be a chance deviate of any value between 0,0... and the values given by dividing the value of m in the table by n. In the second case we transform first the expectation p(esp) into a value of m and procure in the horizontal line, corresponding to m(esp) the extreme values om m which than must be transformed, by dividing through n into values of p(obs). F) Partial and progressive tests may be recomended in all cases where there is lack of material or where the loss of time is less importent than the cost of large scale experiments since in many cases the minimun number necessary to garantee the results within the limits of precision is rather large. One should not forget that the minimun number really represents at the same time a maximun number, necessary only if one takes into consideration essentially the disfavorable variations, but smaller numbers may frequently already satisfactory results. For instance, by definition, we know that a frequecy of p means that we expect one individual in every total o(f1-p). If there were no chance variations, this number (1- p) will be suficient. and if there were favorable variations a smaller number still may yield one individual of the desired type. r.nus trusting to luck, one may start the experiment with numbers, smaller than the minimun calculated according to the formulas given above, and increase the total untill the desired result is obtained and this may well b ebefore the "minimum number" is reached. Some concrete examples of this partial or progressive procedure are given from our genetical experiments with maize.
Resumo:
Magdeburg, Univ., Fak. für Verfahrens- und Systemtechnik, Diss., 2012
Resumo:
This article is devoted to the research of channel efficiency for IP-traffic transmission over Digital Power Line Carrier channels. The application of serial WAN connections and header compression as methods to increase channel efficiency is considered. According to the results of the research an effective solution for network traffic transmission in DPLC networks was proposed.
Resumo:
Magdeburg, Univ., Fak. für Naturwiss., Diss., 2014
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2015
Resumo:
Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2015