901 resultados para transverse process, subaxial cervical spine, cervical trauma, isolated transverse process fractures
Resumo:
Background:Cervical compressive myelopathy, e.g. due to spondylosis or ossification of the posterior longitudinal ligament is a common cause of spinal cord dysfunction. Although human pathological studies have reported neuronal loss and demyelination in the chronically compressed spinal cord, little is known about the mechanisms involved. In particular, the neuroinflammatory processes that are thought to underlie the condition are poorly understood. The present study assessed the localized prevalence of activated M1 and M2 microglia/macrophages in twy/twy mice that develop spontaneous cervical spinal cord compression, as a model of human disease.Methods:Inflammatory cells and cytokines were assessed in compressed lesions of the spinal cords in 12-, 18- and 24-weeks old twy/twy mice by immunohistochemical, immunoblot and flow cytometric analysis. Computed tomography and standard histology confirmed a progressive spinal cord compression through the spontaneously development of an impinging calcified mass.Results:The prevalence of CD11b-positive cells, in the compressed spinal cord increased over time with a concurrent decrease in neurons. The CD11b-positive cell population was initially formed of arginase-1- and CD206-positive M2 microglia/macrophages, which later shifted towards iNOS- and CD16/32-positive M1 microglia/macrophages. There was a transient increase in levels of T helper 2 (Th2) cytokines at 18 weeks, whereas levels of Th1 cytokines as well as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and macrophage antigen (Mac) -2 progressively increased.Conclusions:Spinal cord compression was associated with a temporal M2 microglia/macrophage response, which may act as a possible repair or neuroprotective mechanism. However, the persistence of the neural insult also associated with persistent expression of Th1 cytokines and increased prevalence of activated M1 microglia/macrophages, which may lead to neuronal loss and demyelination despite the presence of neurotrophic factors. This understanding of the aetiopathology of chronic spinal cord compression is of importance in the development of new treatment targets in human disease. © 2013 Hirai et al.
Resumo:
Background: Recent attention on chemotherapeutic intervention against cancer has been focused on discovering and developing phytochemicals as anticancer agents with improved efficacy, low drug resistance and toxicity, low cost and limited adverse side effects. In this study, we investigated the effects of Curcuma C20-dialdehyde on growth, apoptosis and cell cycle arrest in colon and cervical cancer cell lines. Materials and Methods: Antiproliferative, apoptosis induction, and cell cycle arrest activities of Curcuma C20-dialdehyde were determined by WST cell proliferation assay, flow cytometric Alexa fluor 488-annexin V/propidium iodide (PI) staining and PI staining, respectively. Results: Curcuma C20 dialdehyde suppressed the proliferation of HCT116, HT29 and HeLa cells, with IC50 values of 65.4±1.74 μg/ml, 58.4±5.20 μg/ml and 72.0±0.03 μg/ml, respectively, with 72 h exposure. Flow cytometric analysis revealed that percentages of early apoptotic cells increased in a dose-dependent manner upon exposure to Curcuma C20-dialdehyde. Furthermore, exposure to lower concentrations of this compound significantly induced cell cycle arrest at G1 phase for both HCT116 and HT29 cells, while higher concentrations increased sub-G1 populations. However, the concentrations used in this study could not induce cell cycle arrest but rather induced apoptotic cell death in HeLa cells. Conclusions: Our findings suggest that the phytochemical Curcuma C20-dialdehyde may be a potential antineoplastic agent for colon and cervical cancer chemotherapy and/or chemoprevention. Further studies are needed to characterize the drug target or mode of action of the Curcuma C20-dialdehyde as an anticancer agent.
Resumo:
The coexistence of gingival recession (GR) with root coverage indication and non-carious cervical lesions (LCNC) generates the need for a protocol that respects and promotes health of dental and periodontal tissues and allows treatment predictability. The main objectives of this theses were: (1) verify, through clinical evaluations, the connective tissue graft for root coverage on direct and indirect restorations made of ceramic resin; (2) analyze the influence of the battery level of the LED curing unit in the composite resin characteristics; (3) assess the influence of restorative materials, composite resin and ceramics, on the viability of gingival fibroblasts from primary culture. Nine patients with good oral hygiene and occlusal stability diagnosed with LCNCs the anterior teeth including premolars associated with gingival recession (class I and II of Miller) and only gingival recession were selected. After initial clinical examination, occlusal adjustment was performed and the patients had their teeth randomized allocated on direct composite resin restoration of LCNC, polishing and GR treatment with connective tissue graft and advanced coronally flap CR group (n = 15); and indirect ceramic restoration of the LCNC's and GR treatment (CTG+CAF) Group C (n = 15). The GR presented teeth with no clinically formed LCNCs cavity were treated using (CTG+CAF) being the control group (n = 15). Sorption and solubility tests, analysis of the degree of conversion and diametral tensile strength were performed in composite resin samples (n = 10) photoactivated by 100, 50 and 10% battery charge LED unit. The viability of fibroblasts on composite resin, ceramics and dentin disks (n = 3) was examined. Clinical follow-up was performed for three months. The data obtained at different stages were tabulated and subjected to analysis for detection of normal distribution and homogeneity. The results showed that: the LED unit with 10% battery affects the characteristics of the composite resin; restorative materials present biocompatibility with gingival fibroblasts; and the association of surgical and restorative treatment of teeth affected by NCCL and GR presents successful results at 3-month follow-up.
Resumo:
We thank: the patients who took part; Monsieur John-Pierre Bleton for training the physiotherapists; Gladys McPherson (Senior IT Manager), Adesoji Adeyemi (programmer) and Diana Collins (data entry) from the Centre for Healthcare Randomised Trials, University of Aberdeen who provided the randomisation and database service; and the funders including The Dystonia Society, the RS Macdonald Charitable Trust, The Sir Halley Stewart Trust, The Foyle Foundation and The Garfield Weston Foundation. The Dystonia Society and other funders had no role in the design, conduct, analysis or writing of the report or the decision to submit the manuscript.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
We are grateful for the co-operation and assistance that we received from NHS staff in the co-ordinating centres and clinical sites. We thank the women who participated in TOMBOLA. The TOMBOLA trial was supported by the Medical Research Council (G9700808) and the NHS in England and Scotland. The TOMBOLA Group comprises the following: Grant-holders: University of Aberdeen and NHS Grampian, Aberdeen, Scotland: Maggie Cruickshank, Graeme Murray, David Parkin, Louise Smart, Eric Walker, Norman Waugh (Principal Investigator 2004–2008) University of Nottingham and Nottingham NHS, Nottingham, England: Mark Avis, Claire Chilvers, Katherine Fielding, Rob Hammond, David Jenkins, Jane Johnson, Keith Neal, Ian Russell, Rashmi Seth, Dave Whynes University of Dundee and NHS Tayside, Dundee, Tayside: Ian Duncan, Alistair Robertson (deceased) University of Ottawa, Ottawa, Canada: Julian Little (Principal Investigator 1999–2004) National Cancer Registry, Cork, Ireland: Linda Sharp Bangor University, Bangor, Wales: Ian Russell University of Hull, Hull, England: Leslie G Walker Staff in clinical sites and co-ordinating centres Grampian Breda Anthony, Sarah Bell, Adrienne Bowie, Katrina Brown (deceased), Joe Brown, Kheng Chew, Claire Cochran, Seonaidh Cotton, Jeannie Dean, Kate Dunn, Jane Edwards, David Evans, Julie Fenty, Al Finlayson, Marie Gallagher, Nicola Gray, Maureen Heddle, Alison Innes, Debbie Jobson, Mandy Keillor, Jayne MacGregor, Sheona Mackenzie, Amanda Mackie, Gladys McPherson, Ike Okorocha, Morag Reilly, Joan Rodgers, Alison Thornton, Rachel Yeats Tayside Lindyanne Alexander, Lindsey Buchanan, Susan Henderson, Tine Iterbeke, Susanneke Lucas, Gillian Manderson, Sheila Nicol, Gael Reid, Carol Robinson, Trish Sandilands Nottingham Marg Adrian, Ahmed Al-Sahab, Elaine Bentley, Hazel Brook, Claire Bushby, Rita Cannon, Brenda Cooper, Ruth Dowell, Mark Dunderdale, Dr Gabrawi, Li Guo, Lisa Heideman, Steve Jones, Salli Lawson, Zoë Philips, Christopher Platt, Shakuntala Prabhakaran, John Rippin, Rose Thompson, Elizabeth Williams, Claire Woolley Statistical analysis Seonaidh Cotton, Kirsten Harrild, John Norrie, Linda Sharp External Trial Steering Committee Nicholas Day (chair, 1999–2004), Theresa Marteau (chair 2004-), Mahesh Parmar, Julietta Patnick and Ciaran Woodman.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
This project was funded by the NIHR Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 20, No. 68. See the NIHR Journals Library website for further project information.