943 resultados para toxic bait
Resumo:
Nitric oxide is a free-radical gas which can exert both protective and damaging effects. The objectives of the thesis were: (i) to investigate arginine metabolism in isolated rat gastric mucosal cells, (ii) to investigate the role of NO in the induction of ornithine decarboxylase in the rat gastric mucosa damaged by hypertonic saline in vivo, (iii) to expose primary cultures of guinea-pig gastric mucosal cells to oxidative challenge and an NO donor, and to investigate the response in terms of heat shock protein 72 (HSP 72) induction, and (iv) to investigate the induction of iNOS and the role of potential modulators of activity in gastric cell lines. Isolated rat gastric mucosal cells converted exogenous arginine to ornithine and citrulline. This metabolism of arginine was not affected by a range of NO synthase inhibitors, but was reduced by the arginase inhibitors NG-hydroxy-L-arginine and L-ornithine. Thus, the predominant pathway of arginine metabolism involves arginase and ornithine transcarbamoylase, not NO synthase. Pretreatment of rats with NG-nitro-L-arginine promoted activation of ornithine decarboxylase after intragastric hypertonic saline, but did not increase acid phosphatase release (damage). NO may therefore restrict activation of ornithine decarboxylase in response to damage. Exposure of primary cultures of guinea-pig gastric mucosal cells to S-nitroso-N-acetyl-penicillamine (SNAP) caused a concentration dependent induction of HSP 72, which was inhibited by an NO scavenger and blockade of transcription. The effect of SNAP was enhanced by decreasing the intracellular reduced thiol content with diethyl maleate, which itself also induced HSP 72 formation. Substantial amounts of NO may induce defensive responses in cells. Induction of iNOS was not detected in HGT-1 or AGS cells exposed to cytokines. Conclusions An arginase pathway may restrict availability of arginine for NO synthase in gastric mucosa or may be present to supply ornithine for polyamine synthesis. NO may modulate the response to damage of the stomach epithelium in vivo. Exogenous NO may induce a defensive response in gastric mucosal cells.
Resumo:
It has been shown that acute administration of ecothiopate iodine in vivo caused an approximate 80% depression of acetylcholinesterase activity in the diaphragms of mice. Inhibition of acetylcholinesterase was accompanied by an influx of calcium at the junctional region of the diaphragm, which continued during subsequent progressive development of a severe myopathy located in the same region. Myopathy was accompanied by loss of creatine kinase from the muscle and was represented, at the light microscope level, by hypercontraction, Procion Yellow staining and loss of cross striations within the muscle fibres. It appeared to reach a point of maximum severity approximately 3-6 hours after ecothiopate administration and then, by means of some repair/regeneration process, regained an apparently normal morphology within 72 hours of the intoxication. At the ultrastructural level, ecothiopate-induced myopathy was recognised by loss of Z-lines, swelling and vacuolation of mitochondria and sarcoplasmic reticulum, dissarray of myofilaments, crystal formation, and sometimes, by the complete obliteration of sarcomeric structure. The development of myopathy in vitro was shown to be nerve-mediated and to require a functional acetylcholine receptor for its development It was successfully treated therapeutically in vivo by pyridine-2-aldoxime methiodide and prophylactically by pyridostigmine bromide. However, the use of a range of membrane-on channel blockers, and of leupeptin, an inhibitor of calcium-activated-neutral-protease, have been unsuccessful in the prevention of ecothiopate-induced myopathy.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Cigarette smoke is a complex mixture of more than 4000 hazardous chemicals including the carcinogenic benzopyrenes. Nicotine, the most potent component of tobacco, is responsible for the addictive nature of cigarettes and is a major component of e-cigarette cartridges. Our study aims to investigate the toxicity of nicotine with special emphasis on the replacement of animals. Furthermore, we intend to study the effect of nicotine, cigarette smoke and e-cigarette vapours on human airways. In our current work, the BEAS 2B human bronchial epithelial cell line was used to analyse the effect of nicotine in isolation, on cell viability. Concentrations of nicotine from 1.1µM to 75µM were added to 5x105 cells per well in a 96 well plate and incubated for 24 hours. Cell titre blue results showed that all the nicotine treated cells were more metabolically active than the control wells (cells alone). These data indicate that, under these conditions, nicotine does not affect cell viability and in fact, suggests that there is a stimulatory effect of nicotine on metabolism. We are now furthering this finding by investigating the pro-inflammatory response of these cells to nicotine by measuring cytokine secretion via ELISA. Further work includes analysing nicotine exposure at different time points and on other epithelial cells lines like Calu-3.
Resumo:
Background: Adverse drug reactions (ADRs) cause significant morbidity and mortality and account for around 6.5% of hospital admissions. Patient experiences of serious ADRs and their long-term impact on patients' lives, including their influence on current attitudes towards medicines, have not been previously explored. Objective: The aim of the study was to explore the experiences, beliefs, and attitudes of survivors of serious ADRs, using drug-induced Stevens-Johnson syndrome (SJS) and Toxic Epidermal Necrolysis (TEN) as a paradigm. Methods: A retrospective, qualitative study was undertaken using detailed semi-structured interviews. Fourteen adult survivors of SJS and TEN, admitted to two teaching hospitals in the UK, one the location of a tertiary burns centre, were interviewed. Interview transcripts were independently analysed by three different researchers and themes emerging from the text identified. Results: All 14 patients were aware that their condition was drug induced, and all but one knew the specific drug(s) implicated. Several expressed surprise at the perceived lack of awareness of the ADR amongst healthcare professionals, and described how the ADR was mistaken for another condition. Survivors believed that causes of the ADR included (i) being given too high a dose of the drug; (ii) medical staff ignoring existing allergies; and (iii) failure to monitor blood tests. Only two believed that the reaction was unavoidable. Those who believed that the condition could have been avoided had less trust in healthcare professionals. The ADR had a persisting impact on their current lives physically and psychologically. Many now avoided medicines altogether and were fearful of becoming ill enough to need them. © 2011 Adis Data Information BV. All rights reserved. Conclusions: Life-threatening ADRs continued to affect patients’ lives long after the event. Patients’ beliefs regarding the cause of the ADR differed, and may have influenced their trust in healthcare professionals and medicines. We propose that clear communication during the acute phase of a serious ADR may therefore be important.
Resumo:
The presences of heavy metals, organic contaminants and natural toxins in natural water bodies pose a serious threat to the environment and the health of living organisms. Therefore, there is a critical need to identify sustainable and environmentally friendly water treatment processes. In this dissertation, I focus on the fundamental studies of advanced oxidation processes and magnetic nano-materials as promising new technologies for water treatments. Advanced oxidation processes employ reactive oxygen species (ROS) which can lead to the mineralization of a number of pollutants and toxins. The rates of formation, steady-state concentrations, and kinetic parameters of hydroxyl radical and singlet oxygen produced by various TiO2 photocatalysts under UV or visible irradiations were measured using selective chemical probes. Hydroxyl radical is the dominant ROS, and its generation is dependent on experimental conditions. The optimal condition for generation of hydroxyl radical by of TiO2 coated glass microspheres is studied by response surface methodology, and the optimal conditions are applied for the degradation of dimethyl phthalate. Singlet oxygen (1O2) also plays an important role for advanced processes, so the degradation of microcystin-LR by rose bengal, an 1O2 sensitizer was studied. The measured bimolecular reaction rate constant between MC-LR and 1O2 is ∼ 106 M-1 s-1 based on competition kinetics with furfuryl alcohol. The typical adsorbent needs separation after the treatment, while magnetic iron oxides can be easily removed by a magnetic field. Maghemite and humic acid coated magnetite (HA-Fe3O4) were synthesized, characterized and applied for chromium(VI) removal. The adsorption of chromium(VI) by maghemite and HA-Fe3O4 follow a pseudo-second-order kinetic process. The adsorption of chromium(VI) by maghemite is accurately modeled using adsorption isotherms, and solution pH and presence of humic acid influence adsorption. Humic acid coated magnetite can adsorb and reduce chromium(VI) to non-toxic chromium (III), and the reaction is not highly dependent on solution pH. The functional groups associated with humic acid act as ligands lead to the Cr(III) complex via a coupled reduction-complexation mechanism. Extended X-ray absorption fine structure spectroscopy demonstrates the Cr(III) in the Cr-loaded HA-Fe 3O4 materials has six neighboring oxygen atoms in an octahedral geometry with average bond lengths of 1.98 Å.
Resumo:
Harmful algal blooms (HABs) are becoming more frequent as climate changes, with tropical species moving northward. Monitoring programs detecting the presence of toxic algae before they bloom are of paramount importance to protect aquatic ecosystems, aquaculture, human health and local economies. Rapid and reliable species identification methods using molecular barcodes coupled to biosensor detection tools have received increasing attention over the past decade as an alternative to the impractical standard microscopic counting-based techniques. This work reports on a PCR amplification-free electrochemical genosensor for the enhanced selective and sensitive detection of RNA from multiple Mediterranean toxic algal species. For a sandwich hybridization (SHA), we designed longer capture and signal probes for more specific target discrimination against a single base-pair mismatch from closely related species and for reproducible signals. We optimized experimental conditions, viz., minimal probe concentration in the SHA on a screen-printed gold electrode and selected the best electrochemical mediator. Probes from 13 Mediterranean dinoflagellate species were tested under optimized conditions and the format further tested for quantification of RNA from environmental samples. We not only enhanced the selectivity and sensitivity of the state-of-the-art toxic algal genosensors but also increased the repertoire of toxic algal biosensors in the Mediterranean, towards an integral and automatic monitoring system.
Resumo:
Harmful algal blooms (HABs) are becoming more frequent as climate changes, with tropical species moving northward. Monitoring programs detecting the presence of toxic algae before they bloom are of paramount importance to protect aquatic ecosystems, aquaculture, human health and local economies. Rapid and reliable species identification methods using molecular barcodes coupled to biosensor detection tools have received increasing attention over the past decade as an alternative to the impractical standard microscopic counting-based techniques. This work reports on a PCR amplification-free electrochemical genosensor for the enhanced selective and sensitive detection of RNA from multiple Mediterranean toxic algal species. For a sandwich hybridization (SHA), we designed longer capture and signal probes for more specific target discrimination against a single base-pair mismatch from closely related species and for reproducible signals. We optimized experimental conditions, viz., minimal probe concentration in the SHA on a screen-printed gold electrode and selected the best electrochemical mediator. Probes from 13 Mediterranean dinoflagellate species were tested under optimized conditions and the format further tested for quantification of RNA from environmental samples. We not only enhanced the selectivity and sensitivity of the state-of-the-art toxic algal genosensors but also increased the repertoire of toxic algal biosensors in the Mediterranean, towards an integral and automatic monitoring system.