567 resultados para thiol


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most pharmaceutically relevant proteins and many extracellular proteins contain disulfide bonds. Formation of the correct disulfide bonds is essential for stability in almost all cases. Disulfide containing proteins can be rapidly and inexpensively overexpressed in bacteria. However, the overexpressed proteins usually form aggregates inside the bacteria, called inclusion bodies, which contains inactive and non-native protein. To obtain native protein, inclusion bodies need to be isolated and resolubilized, and then the resulting protein refolded in vitro. In vitro protein folding is aided by the addition of a redox buffer, which is composed of a small molecule disulfide and/or a small molecule thiol. The most commonly used redox buffer contains reduced and oxidized glutathione. Recently, aliphatic dithiols and aromatic monothiols have been employed as redox buffers. Aliphatic dithiols improved the yield of native protein as compared to the aliphatic thiol, glutathione. Dithiols mimic the in vivo protein folding catalyst, protein disulfide isomerase, which has two thiols per active site. Furthermore, aromatic monothiols increased the folding rate and yield of lysozyme and RNase A relative to glutathione. By combining the beneficial properties of aliphatic dithiols and aromatic monothiols, aromatic dithiols were designed and were expected to increase in vitro protein folding rates and yields. Aromatic monothiols (1-4) and their corresponding disulfides (5-8), two series of ortho- and para-substituted ethylene glycol dithiols (9-15), and a series of aromatic quaternary ammonium salt dithiols (16-17) were synthesized on a multigram scale. Monothiols and disulfides (1-8) were utilized to fold lysozyme and bovine pancreatic trypsin inhibitor. Dithiols (11-17) were tested for their ability to fold lysozyme. At pH 7.0 and pH 8.0, and high protein concentration (1 mg/mL), aromatic dithiols (16, 17) and a monothiol (3) significantly enhanced the in vitro folding rate and yield of lysozyme relative to the aliphatic thiol, glutathione. Additionally, aromatic dithiols (16, 17) significantly enhance the folding yield as compared to the corresponding aromatic monothiol (3). Thus, the folding rate and yield enhancements achieved in in vitro protein folding at high protein concentration will decrease the volume of renaturation solution required for large scale processes and consequently reduce processing time and cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reduced organic sulfur (ROS) compounds are environmentally ubiquitous and play an important role in sulfur cycling as well as in biogeochemical cycles of toxic metals, in particular mercury. Development of effective methods for analysis of ROS in environmental samples and investigations on the interactions of ROS with mercury are critical for understanding the role of ROS in mercury cycling, yet both of which are poorly studied. Covalent affinity chromatography-based methods were attempted for analysis of ROS in environmental water samples. A method was developed for analysis of environmental thiols, by preconcentration using affinity covalent chromatographic column or solid phase extraction, followed by releasing of thiols from the thiopropyl sepharose gel using TCEP and analysis using HPLC-UV or HPLC-FL. Under the optimized conditions, the detection limits of the method using HPLC-FL detection were 0.45 and 0.36 nM for Cys and GSH, respectively. Our results suggest that covalent affinity methods are efficient for thiol enrichment and interference elimination, demonstrating their promising applications in developing a sensitive, reliable, and useful technique for thiol analysis in environmental water samples. The dissolution of mercury sulfide (HgS) in the presence of ROS and dissolved organic matter (DOM) was investigated, by quantifying the effects of ROS on HgS dissolution and determining the speciation of the mercury released from ROS-induced HgS dissolution. It was observed that the presence of small ROS (e.g., Cys and GSH) and large molecule DOM, in particular at high concentrations, could significantly enhance the dissolution of HgS. The dissolved Hg during HgS dissolution determined using the conventional 0.22 μm cutoff method could include colloidal Hg (e.g., HgS colloids) and truly dissolved Hg (e.g., Hg-ROS complexes). A centrifugal filtration method (with 3 kDa MWCO) was employed to characterize the speciation and reactivity of the Hg released during ROS-enhanced HgS dissolution. The presence of small ROS could produce a considerable fraction (about 40% of total mercury in the solution) of truly dissolved mercury (< 3 kDa), probably due to the formation of Hg-Cys or Hg-GSH complexes. The truly dissolved Hg formed during GSH- or Cys-enhanced HgS dissolution was directly reducible (100% for GSH and 40% for Cys) by stannous chloride, demonstrating its potential role in Hg transformation and bioaccumulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recreational abuse of the drugs cocaine, methamphetamine, and morphine continues to be prevalent in the United States of America and around the world. While numerous methods of detection exist for each drug, they are generally limited by the lifetime of the parent drug and its metabolites in the body. However, the covalent modification of endogenous proteins by these drugs of abuse may act as biomarkers of exposure and allow for extension of detection windows for these drugs beyond the lifetime of parent molecules or metabolites in the free fraction. Additionally, existence of covalently bound molecules arising from drug ingestion can offer insight into downstream toxicities associated with each of these drugs. This research investigated the metabolism of cocaine, methamphetamine, and morphine in common in vitro assay systems, specifically focusing on the generation of reactive intermediates and metabolites that have the potential to form covalent protein adducts. Results demonstrated the formation of covalent adduction products between biological cysteine thiols and reactive moieties on cocaine and morphine metabolites. Rigorous mass spectrometric analysis in conjunction with in vitro metabolic activation, pharmacogenetic reaction phenotyping, and computational modeling were utilized to characterize structures and mechanisms of formation for each resultant thiol adduction product. For cocaine, data collected demonstrated the formation of adduction products from a reactive arene epoxide intermediate, designating a novel metabolic pathway for cocaine. In the case of morphine, data expanded on known adduct-forming pathways using sensitive and selective analysis techniques, following the known reactive metabolite, morphinone, and a proposed novel metabolite, morphine quinone methide. Data collected in this study describe novel metabolic events for multiple important drugs of abuse, culminating in detection methods and mechanistic descriptors useful to both medical and forensic investigators when examining the toxicology associated with cocaine, methamphetamine, and morphine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite of its known toxicity and potential to cause cancer, arsenic has been proven to be a very important tool for the treatment of various refractory neoplasms. One of the promising arsenic-containing chemotherapeutic agents in clinical trials is Darinaparsin (dimethylarsinous glutathione, DMA III(GS)). In order to understand its toxicity and therapeutic efficacy, the metabolism of Darinaparsin in human cancer cells was evaluated. With the aim of detecting all potential intermediates and final products of the biotransformation of Darinaparsin and other arsenicals, an analytical method employing high performance liquid chromatography inductively coupled mass spectrometry (HPLC-ICP-MS) was developed. This method was shown to be capable of separating and detecting fourteen human arsenic metabolites in one chromatographic run. The developed analytical technique was used to evaluate the metabolism of Darinaparsin in human cancer cells. The major metabolites of Darinaparsin were identified as dimethylarsinic acid (DMAV), DMA III(GS), and dimethylarsinothioyl glutathione (DMMTAV(GS)). Moreover, the method was employed to study the conditions and mechanisms of formation of thiol-containing arsenic metabolites from DMAIII(GS) and DMAV as the mechanisms of formation of these important As species were unknown. The arsenic sulfur compounds studied included but were not limited to the newly discovered human arsenic metabolite DMMTA V(GS) and the unusually highly toxic dimethylmonothioarsinic acid (DMMTAV). It was found that these species may form from hydrogen sulfide produced in enzymatic reactions or by utilizing the sulfur present in protein persulfides. Possible pathways of thiolated arsenical formation were proposed and supporting data for their existence provided. In addition to known mechanism of arsenic toxicity such as protein-binding and reactive oxygen formation, it was proposed that the utilization of thiols from protein persulfides during the formation of thiolated arsenicals may be an additional mechanism of toxicity. The toxicities of DMAV(GS), DMMTA V, and DMMTAV(GS) were evaluated in cancer cells, and the ability of these cells to take the compounds up were compared. When assessing the toxicity by exposing multiple myeloma cells to arsenicals externally, DMMTAV(GS) was much less toxic than DMAIII(GS) and DMMTAV, probably as a result of its very limited uptake (less than 10% and 16% of DMAIII(GS) and DMMTAV respectively).^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Almost all pharmaceutically relevant proteins and many extracellular proteins contain disulfide bonds, which are essential for protein functions. In many cases, disulfidecontaining proteins are produced via in vitro protein folding that involves the oxidation of reduced protein to native protein, a complex process. The in vitro folding of reduced lysozyme has been extensively studied as a model system because native lysozyme is small, inexpensive, and has only four disulfide bonds. The folding of reduced lysozyme is conducted with the aid of a redox buffer consisting of a small molecule disulfide and a small molecule thiol, such as oxidized and reduced glutathione. Herein, in vitro folding rates and yields of lysozyme obtained in the presence of a series of aromatic thiols and oxidized glutathione are compared to those obtained with reduced and oxidized glutathione. Results showed that aromatic thiols significantly increase the folding rate of lysozyme compared to glutathione.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The correlation between the type 1 diabetes mellitus and oxidative stress have been described in several studies, however its underlying mechanisms are not fully elucidated. The present work aimed to evaluate the effects of four weeks of streptozootocin-induced (STZ) diabetes in the redox homeostasis of rat hepatocytes. Thus, the liver of male Wistar rats from control and diabetic groups were collected and the activity and expression of antioxidant enzymes, as well the main markers of oxidative stress and content of H2O2 in these tissues were measured. The diabetes induced the activity of superoxide dismutase (SOD) and the gene expression of its mitochondrial isoform, SOD2. However, the expression of SOD1, the cytoplasmic isoform, was reduced by this disease. The activity and expression of catalase (CAT), as well the expression of glutathione peroxidase 1 (GPX1) and peroxiredoxin 4 (PRX4) were drastically reduced in the hepatocytes of diabetics rats. Even with this debility in the peroxidases mRNA expression, the content of H2O2 was reduced in the liver of diabetics rats when compared to the control group. The diabetes caused an increase of lipid peroxidation and a decrease of protein thiol content, showing that this disease causes distinct oxidative effects in different cell biomolecules. Our results indicate that four week of diabetes induced by STZ is already enough to compromise the enzymatic antioxidant systems of the hepatocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Both low-dimensional bar-coded metal oxide layers, which exhibit molecular hinging, and free-standing organic nanostructures can be obtained from unique nanofibers of vanadium oxide (VOx). The nanofibers are successfully synthesized by a simple chemical route using an ethanolic solution of vanadium pentoxide xerogel and dodecanethiol resulting in a double bilayered laminar turbostratic structure. The formation of vanadium oxide nanofibers is observed after hydrothermal treatment of the thiol-intercalated xerogel, resulting in typical lengths in the range 2–6 µm and widths of about 50–500 nm. We observe concomitant hinging of the flexible nanofiber lamina at periodic hinge points in the final product on both the nanoscale and molecular level. Bar-coded nanofibers comprise alternating segments of organic–inorganic (thiols–VOx) material and are amenable to segmented, localized metal nanoparticle docking. Under certain conditions free-standing bilayered organic nanostructures are realized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gold nanoparticles (Au NPs) with diameters ranging between 5-60 nm have been synthesised in water, and further stabilized with polyethylene glycol-based thiol polymers (mPEG-SH). Successful PEGylation of the Au NPs was confirmed by Dynamic Light scattering (DLS) and Zeta potential measurements. PEG coating of the Au NPs is the key of their colloidal stabilty, and its successful applications. Catalytic efficiency testing of the PEG-AuNPs were carried out on homocoupling of boronic acid. PEG-Au NPs with AuNps diameter < 30 nm were useful as catalyst in water. Finally, the PEG-Au NPs were also shown to be stable in biological fluid and not cytotoxic on B16.F10 cell line, making them attractive for further studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Histone deacetylases (HDACs) have been shown to play key roles in tumorigenesis, and

have been validated as effective enzyme target for cancer treatment. Largazole, a marine natural

product isolated from the cyanobacterium Symploca, is an extremely potent HDAC inhibitor that

has been shown to possess high differential cytotoxicity towards cancer cells along with excellent

HDAC class-selectivity. However, improvements can be made in the isoform-selectivity and

pharmacokinetic properties of largazole.

In attempts to make these improvements and furnish a more efficient biochemical probe

as well as a potential therapeutic, several largazole analogues have been designed, synthesized,

and tested for their biological activity. Three different types of analogues were prepared. First,

different chemical functionalities were introduced at the C2 position to probe the class Iselectivity profile of largazole. Additionally, docking studies led to the design of a potential

HDAC8-selective analogue. Secondly, the thiol moiety in largazole was replaced with a wide

variety of othe zinc-binding group in order to probe the effect of Zn2+ affinity on HDAC

inhibition. Lastly, three disulfide analogues of largazole were prepared in order to utilize a

different prodrug strategy to modulate the pharmacokinetic properties of largazole.

Through these analogues it was shown that C2 position can be modified significantly

without a major loss in activity while also eliciting minimal changes in isoform-selectivity. While

the Zn2+-binding group plays a major role in HDAC inhibition, it was also shown that the thiol

can be replaced by other functionalities while still retaining inhibitory activity. Lastly, the use of

a disulfide prodrug strategy was shown to affect pharmacokinetic properties resulting in varying

functional responses in vitro and in vivo.

v

Largazole is already an impressive HDAC inhibitor that shows incredible promise.

However, in order to further develop this natural product into an anti-cancer therapeutic as well as

a chemical probe, improvements in the areas of pharmacokinetics as well as isoform-selectivity

are required. Through these studies we plan on building upon existing structure–activity

relationships to further our understanding of largazole’s mechanism of inhibition so that we may

improve these properties and ultimately develop largazole into an efficient HDAC inhibitor that

may be used as an anti-cancer therapeutic as well as a chemical probe for the studying of

biochemical systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gold nanoparticles (Au NPs) with diameters ranging between 15 and 150 nm have been synthesised in water. 15 and 30 nm Au NPs were obtained by the Turkevich and Frens method using sodium citrate as both a reducing and stabilising agent at high temperature (Au NPs-citrate), while 60, 90 and 150 nm Au NPs were formed using hydroxylamine-o-sulfonic acid (HOS) as a reducing agent for HAuCl4 at room temperature. This new method using HOS is an extension of the approaches previously reported for producing Au NPs with mean diameters above 40 nm by direct reduction. Functionalised polyethylene glycol-based thiol polymers were used to stabilise the pre-synthesised Au NPs. The nanoparticles obtained were characterised using uv-visible spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM). Further bioconjugation on 15, 30 and 90 nm PEGylated Au NPs were performed by grafting Bovine Serum Albumin, Transferrin and Apolipoprotein E (ApoE).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biofouling, the accumulation of biomolecules, cells, organisms and their deposits on submerged and implanted surfaces, is a ubiquitous problem across various human endeavors including maritime operations, medicine, food industries and biotechnology. Since several decades, there have been substantial research efforts towards developing various types of antifouling and fouling release approaches to control bioaccumulation on man-made surfaces. In this work we hypothesized, investigated and developed dynamic change of the surface area and topology of elastomers as a general approach for biofouling management. Further, we combined dynamic surface deformation of elastomers with other existing antifouling and fouling-release approaches to develop multifunctional, pro-active biofouling control strategies.

This research work was focused on developing fundamental, new and environment-friendly approaches for biofouling management with emphasis on marine model systems and applications, but which also provided fundamental insights into the control of infectious biofilms on biomedical devices. We used different methods (mechanical stretching, electrical-actuation and pneumatic-actuation) to generate dynamic deformation of elastomer surfaces. Our initial studies showed that dynamic surface deformation methods are effective in detaching laboratory grown bacterial biofilms and barnacles. Further systematic studies revealed that a threshold critical surface strain is required to debond a biofilm from the surface, and this critical strain is dependent on the biofilm mechanical properties including adhesion energy, thickness and modulus. To test the dynamic surface deformation approach in natural environment, we conducted field studies (at Beaufort, NC) in natural seawater using pneumatic-actuation of silicone elastomer. The field studies also confirmed that a critical substrate strain is needed to detach natural biofilm accumulated in seawater. Additionally, the results from the field studies suggested that substrate modulus also affect the critical strain needed to debond biofilms. To sum up, both the laboratory and the field studies proved that dynamic surface deformation approach can effectively detach various biofilms and barnacles, and therefore offers a non-toxic and environmental friendly approach for biofouling management.

Deformable elastomer systems used in our studies are easy to fabricate and can be used as complementary approach for existing commercial strategies for biofouling control. To this end, we aimed towards developed proactive multifunctional surfaces and proposed two different approaches: (i) modification of elastomers with antifouling polymers to produce multifunctional, and (ii) incorporation of silicone-oil additives into the elastomer to enhance fouling-release performance.

In approach (i), we modified poly(vinylmethylsiloxane) elastomer surfaces with zwitterionic polymers using thiol-ene click chemistry and controlled free radical polymerization. These surfaces exhibited both fouling resistance and triggered fouling-release functionalities. The zwitterionic polymers exhibited fouling resistance over short-term (∼hours) exposure to bacteria and barnacle cyprids. The biofilms that eventually accumulated over prolonged-exposure (∼days) were easily detached by applying mechanical strain to the elastomer substrate. In approach (ii), we incorporated silicone-oil additives in deformable elastomer and studied synergistic effect of silicone-oils and surface strain on barnacle detachment. We hypothesized that incorporation of silicone-oil additive reduces the amount of surface strain needed to detach barnacles. Our experimental results supported the above hypothesis and suggested that surface-action of silicone-oils plays a major role in decreasing the strain needed to detach barnacles. Further, we also examined the effect of change in substrate modulus and showed that stiffer substrates require lower amount of strain to detach barnacles.

In summary, this study shows that (1) dynamic surface deformation can be used as an effective, environmental friendly approach for biofouling control (2) stretchable elastomer surfaces modified with anti-fouling polymers provides a pro-active, dual-mode approach for biofouling control, and (3) incorporation of silicone-oils additives into stretchable elastomers improves the fouling-release performance of dynamic surface deformation technology. Dynamic surface deformation by itself and as a supplementary approach can be utilized biofouling management in biomedical, industrial and marine applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A natural phenomenon characterized by dense aggregations of unicellular photosynthetic marine organisms has been termed colloquially as red tides because of the vivid discoloration of the water. The dinoflagellate Karenia brevis is the cause of the Florida red tide bloom. K. brevis produces the brevetoxins, a potent suite of neurotoxins responsible for substantial amounts of marine mammal and fish mortalities. When consumed by humans, the toxin causes Neurotoxic Shellfish Poisoning (NSP). The native function of brevetoxin within the organism has remained mysterious since its discovery. There is a need to identify factors which contribute to and regulate toxin production within K. brevis. These toxins are produced and retained within the cell implicating a significant cellular role for their presence. Localization of brevetoxin and identification of a native receptor may provide insight into its native role as well as other polyether ladder type toxins such as the ciguatoxins, maitotoxins, and yessotoxins. In higher organisms these polyether ladder molecules bind to transmembrane proteins with high affinity. We anticipated the native brevetoxin receptor would also be a transmembrane protein. Photoaffinity labeling has become increasingly popular for identifying ligand receptors. By attaching ligands to these photophors, one is able to activate the molecule after the ligand binds to its receptor to obtain a permanent linkage between the two. Subsequent purification provides the protein with the ligand directly attached. A molecule that is capable of fluorescence is a fluorophore, which upon excitation is capable of re-emitting light. Fluorescent labeling uses fluorophores by attaching them covalently to biologically active compounds. The synthesis of a brevetoxin photoaffinity probe and its application in identifying a native brevetoxin receptor will be described. The preparation of a fluorescent derivative of brevetoxin will be described and its use in localizing the toxin to an organelle within K. brevis. In addition, the general utility of a synthesized photoaffinity label with other toxins having similar functionality will be described. An alternative synthetic approach to a general photoaffinity label will also be discussed whose goal was to accelerate the preparation and improve the overall synthetic yields of a multifunctional label.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Particulate matter has been shown to stimulate the innate immune system and induce acute inflammation. Therefore, while nanotechnology has the potential to provide therapeutic formulations with improved efficacy, there are concerns such pharmaceutical preparations could induce unwanted inflammatory side effects. Accordingly, we aim to examine the utility of using the proteolytic activity signatures of cysteine proteases, caspase 1 and cathepsin S (CTSS), as biomarkers to assess particulate-induced inflammation.

METHODS: Primary peritoneal macrophages and bone marrow-derived macrophages from C57BL/6 mice and ctss(-/-) mice were exposed to micro- and nanoparticulates and also the lysosomotropic agent, L-leucyl-L-leucine methyl ester (LLOME). ELISA and immunoblot analyses were used to measure the IL-1β response in cells, generated by lysosomal rupture. Affinity-binding probes (ABPs), which irreversibly bind to the active site thiol of cysteine proteases, were then used to detect active caspase 1 and CTSS following lysosomal rupture. Reporter substrates were also used to quantify the proteolytic activity of these enzymes, as measured by substrate turnover.

RESULTS: We demonstrate that exposure to silica, alum and polystyrene particulates induces IL-1β release from macrophages, through lysosomal destabilization. IL-1β secretion positively correlated with an increase in the proteolytic activity signatures of intracellular caspase 1 and extracellular CTSS, which were detected using ABPs and reporter substrates. Interestingly IL-1β release was significantly reduced in primary macrophages from ctss(-/-) mice.

CONCLUSIONS: This study supports the emerging significance of CTSS as a regulator of the innate immune response, highlighting its role in regulating IL-1β release. Crucially, the results demonstrate the utility of intracellular caspase 1 and extracellular CTSS proteolytic activities as surrogate biomarkers of lysosomal rupture and acute inflammation. In the future, activity-based detection of these enzymes may prove useful for the real-time assessment of particle-induced inflammation and toxicity assessment during the development of nanotherapeutics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tubular function of 17 pediatric patients with a mild form of acute post-infectious glomerulonephritis was prospectively evaluated by assessment of the urinary activity of proximal and distal tubule enzymes. Neutral-like endopeptidase (NEP-like) and angiotensin-converting enzyme (ACE) were the proximal tubule enzymes assessed, while prolyl-endopeptidase (PE) and serine-endopeptidase H1 and H2 were the distal tubule enzymes analyzed. Urine was collected at diagnosis (T0) and after 2 (T2) and 6 (T6) months of follow-up. NEP-like enzyme activity (nmol/mg creatinine; median±quartile range) was increased at diagnosis, and this remained stable during the first 6 months (T0 18.30±83.26, T2 17.32±49.56, T6 23.38±107.18). Urinary activity of the other enzymes was as follows: ACE (mU/ml per mg creatinine) T0 0.08±0.16, T2 0.06±0.10, T6 0.18±0.29; PE (nmol/mg creatinine) T0 6.70±84.87, T2 9.55±69.00, T6 13.67±28.70; serine-endopeptidase H1 (nmol/mg creatinine) T0 7.86±26.95, T2 17.17±59.37, T6 18.19± 79.14; and serine-thiol-endopeptidase H2 (nmol/mg creatinine) T0 3.06±21.97, T2 12.06±32.42, T6 16.22± 44.06. Thirty other healthy children matched for age and gender were considered as a control group. This group was assessed once and the results were: NEP-like activity 6.05±10.54, ACE 0.11±0.22, PE 7.10±13.36, H1 5.00±17.30, and H2 6.00±20.16. In conclusion, we observed that NEP-like and H1 enzymes exhibited significant increased urinary activity 6 months after the diagnosis. This increase occurred in spite of the disappearance of clinical symptoms, which occurred 2 months after the diagnosis. We believe that the increase in urinary enzymatic activity could be a manifestation of a silent tubular dysfunction following an episode of acute post-infectious glomerulonephritis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Campylobacter is a major cause of acute bacterial gastroenteritis worldwide, with the highest number of infections being attributed to Campylobacter jejuni. C. jejuni is a Gram negative, spiral, motile bacterium that belongs to the campylobacterales order and is related to both Helicobacter spp. and Wolinella sp.. It has long been established that proton pump inhibitors (PPIs) and other benzimidazole derivatives display anti-Helicobacter activity in vitro. PPIs have in the past been shown to affect Helicobacter pylori growth, survival, motility, morphology, adhesion/invasion potential and susceptibility to conventional antibiotics. PPIs are highly effective drugs that are well tolerated, safe for prolonged daily use and are therefore in high demand. Both the PPIs omeprazole and lansoprazole featured in the top ten drugs prescribed in England in 2014. In 2014 Campylobacter was also the most commonly diagnosed gastrointestinal infection in Scotland, in England and Wales and also in Europe. It has previously been generally accepted that patients who are being treated with PPIs are more susceptible to enteric infections such as Campylobacter than people not taking PPIs. The effect of PPI exposure on H. pylori has been investigated rigorously in the past. A single previous study has hinted that PPIs may also be capable of affecting the related organism C. jejuni,but investigations have been extremely limited in comparison to those investigating the effect of PPIs on H. pylori. This study has investigated the in vitro effects of direct contact with PPIs on the biology ofC. jejuni. Exposure to the PPI pantoprazole was found to affect C. jejuni growth/survival, motility, morphology, biofilm formation, invasion potential and susceptibility to some conventional antibiotics. Microarray studies showed that the cmeA and Cj0561c genes were significantly up-regulated in response to pantoprazole exposure and a CmeABC deficient mutant was found to be significantly more susceptible to killing by pantoprazole than was the parent strain. Proteomic analysis indicated that the oxidative stress response of C. jejuni was induced following exposure to sub-lethal concentrations of pantoprazole. C. jejuni gene expression was assessed using qRT-PCR and the genes encoding for thiol peroxidase and GroEL co-chaperonin (both involved in the C. jejuni oxidative stress response) were found to be around four times higher in response to exposure to sub-lethal concentrations of pantoprazole. Experiments using the oxidative stress inhibitors thiourea (a hydroxyl radical quencher) and bipyridyl (a ferrous iron chelator) showed that killing by pantoprazole was not mediated by hydroxyl radical production.