939 resultados para telluride glass


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ZnTe1-xSx epitaxial layers grown on GaAs by molecular-beam epitaxy were studied by photoluminescence (PL) as a function of temperatures, excitation powers, and hydrostatic pressures. A sulfur-related emission peak, labeled as P-2, is identified as a deep-level emission by hydrostatic-pressure PL measurement. This indicates that sulfur atoms form isoelectronic centers in a ZnTe matrix. The results qualitatively agree with the theoretical prediction and show experimental evidence of isoelectronic S in ZnTe. A model is proposed to explain the emission mechanisms in the ZnTe1-xSx system with small x values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, The TBS glass microspheres doped with Er3+ for morphology-dependent resonances of upconversion emission were designed. The glass sample components are 25TiO(2)-27BaCO(3)-8Ba(NO3)(2)-6ZnO(2)-9CaCO(3)-5H(3)BO(3)-10SiO(2)-7water glass-3Er(2)O(3) (wt%), and the emission spectra of TBS glass and a TBS glass microsphere (about 48 mum in diameter) were measured under 633 nm excitation and discussed. The strong morphology-dependent resonances of upconversion luminescences in the microsphere were observed. The observed resonances could be assigned by using the well-known Lorenz-Mie Formalism. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass spherical microcavities containing CdSSe semiconductor quantum dots (QDs) of a few microns in diameter are fabricated using a physical method. When a single glass microspherical cavity is excited by a laser beam at room temperature, very strong and sharp whispering gallery modes are shown on the background of PL spectra of CdSSe QDs, which confirms that coupling between the optical emission of embedded QDs and spherical cavity modes is realized. For a glass microsphere only 4.6 mum in diameter, it was found that the energy separation is nearly up to 26 nm both for TE and TM modes. With the increasing excitation intensity, the excitation intensity dependence of the emission intensity is not linear in the double-logarithmic scale. Above the threshold value, the linewidths of resonance modes become narrower. The lasing behavior is achieved at relatively low excitation intensity at room temperature. High optical stability and low threshold value make this optical system promising in visible microlaser applications. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report development of a new fiber doped with PbSe quantum dots for nonlinear optical applications. PbSe quantum dots related absorption peaks were obtained at 1021, 1093 and 1351 nm. The resonant optical nonlinearity and attenuation at 1500 nm were measured to be 9.4 × 10−16 m2/W and 0.01 dB/m, respectively. The emission around 1540 nm was observed upon near resonant pumping at 1064 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the nanoscale periodic corrugation (NPC) structures on the dynamic fracture surface of a typical tough bulk metallic glass, submitted to high-velocity plate impact and scanned by atomic force microscopy (AFM). The detrended fluctuation analysis (DFA) of the recorded AFM profiles reveals that the valley landscapes of the NPC are nearly memoryless, characterized by Hurst parameter of 0.52 and exhibiting a self-similar fractal character with the dimension of about 1.48. Our findings confirm the existence of the “quasi-cleavage” fracture underpinned by tension transformation zones (TTZs) in metallic glasses.