967 resultados para sudden pollution accident
Resumo:
1. Wild bees are one of the most important groups of pollinators in the temperate zone. Therefore, population declines have potentially negative impacts for both crop and wildflower pollination. Although heavy metal pollution is recognized to be a problem affecting large parts of the European Union, we currently lack insights into the effects of heavy metals on wild bees. 2. We investigated whether heavy metal pollution is a potential threat to wild bee communities by comparing (i) species number, (ii) diversity and (iii) abundance as well as (iv) natural mortality of emerging bees along two independent gradients of heavy metal pollution, one at Olkusz (OLK), Poland and the other at Avonmouth (AVO), UK. We used standardized nesting traps to measure species richness and abundance of wild bees, and we recorded the heavy metal concentration in pollen collected by the red mason bee Osmia rufa as a measure of pollution. 3. The concentration of cadmium, lead and zinc in pollen collected by bees ranged from a background level in unpolluted sites [OLK: 1·3, 43·4, 99·8 (mg kg−1); AVO: 0·8, 42·0, 56·0 (mg kg−1), respectively] to a high level on sites in the vicinity of the OLK and AVO smelters [OLK: 6·7, 277·0, 440·1 (mg kg−1); AVO: 9·3, 356·2, 592·4 (mg kg−1), respectively]. 4. We found that with increasing heavy metal concentration, there was a steady decrease in the number, diversity and abundance of solitary, wild bees. In the most polluted sites, traps were empty or contained single occupants, whereas in unpolluted sites, the nesting traps collected from 4 to 5 species represented by up to ten individuals. Moreover, the proportion of dead individuals of the solitary bee Megachile ligniseca increased along the heavy metal pollution gradient at OLK from 0·2 in uncontaminated sites to 0·5 in sites with a high concentration of pollution. 5. Synthesis and applications. Our findings highlight the negative relationship between heavy metal pollution and populations of wild bees and suggest that increasing wild bee richness in highly contaminated areas will require special conservation strategies. These may include creating suitable nesting sites and sowing a mixture of flowering plants as well as installing artificial nests with wild bee cocoons in polluted areas. Applying protection plans to wild pollinating bee communities in heavy metal-contaminated areas will contribute to integrated land rehabilitation to minimize the impact of pollution on the environment.
Resumo:
A healthy 33 year old man with no previous history of speech language problems was referred to speech language therapy services following an episode which left him with a pronounced stutter, and which worsened over the next ten days. A range of neurological and psychological assessments failed to find any abnormality, as did MRI testing, and a diagnosis of psychogenic stuttering was made. This client was seen for three sessions of fluency therapy without significant improvement, after which he ceased attending. This paper considers the relationship between psychogenic and neurogenic stuttering generally, then more specifically in regard to this client, and the treatment he received. The paper concludes by considering problems in differentially diagnosing neurogenic from psychogenic stuttering.
Resumo:
More than 30 epiphytic lichens, collected in Agadir (Morroco) and along a 150-km transect from the Atlantic Ocean eastward, were analyzed for their metal content and lead isotopic composition. This dataset was used to evaluate atmospheric metal contamination and the impact of the city on the surrounding area. The concentrations of Cu, Pb, and Zn (average ± 1 SD) were 20.9 ± 15.2 μg g−1, 13.8 ± 9.0 μg g−1, and 56.6 ± 26.6 μg g−1, respectively, with the highest values observed in lichens collected within the urban area. The 206Pb/207Pb and 208Pb/207Pb ratios in the lichens varied from 1.146 to 1.186 and from 2.423 to 2.460, respectively. Alkyllead-gasoline sold in Morocco by the major petrol companies gave isotopic ratios of 206Pb/207Pb = 1.076–1.081 and 208Pb/207Pb = 2.348–2.360. These new, homogeneous values for gasoline-derived lead improve and update the scarce isotopic database of potential lead sources in Morocco, and may be of great value to future environmental surveys on the presence of lead in natural reservoirs, where it persists over time (e.g., soils and sediments). The interest of normalizing metal concentrations in lichens to concentrations of a lithogenic element is demonstrated by the consistency of the results thus obtained with lead isotopic ratios. Leaded gasoline contributed less than 50% of the total amount of lead accumulated in lichens, even in areas subject to high vehicular traffic. This strongly suggests that the recent banishment of leaded gasoline in Morocco will not trigger a drastic improvement in air quality, at least in Agadir.
Resumo:
This study compares two sets of measurements of the composition of bulk precipitation and throughfall at a site in southern England with a 20-year gap between them. During this time, SO2 emissions from the UK fell by 82%, NOx emissions by 35% and NH3 emissions by 7%. These reductions were partly reflected in bulk precipitation, with deposition reductions of 56% in SO4,38% in NO3, 32% in NH4, and 73% in H+. In throughfall under Scots pine, the effects were more dramatic, with an 89% reduction in SO4 deposition and a 98% reduction in H+ deposition. The mean pH under these trees increased from 2.85 to 4.30. Nitrate and ammonium deposition in throughfall increased slightly, however. In the earlier period, the Scots pines were unable to neutralise the high flux of acidity associated with sulphur deposition, even though this was not a highly polluted part of the UK, and deciduous trees (oak and birch) were only able to neutralise it in summer when the leaves were present. In the later period, the sulphur flux had reduced to the point where the acidity could be neutralised by all species — the neutralisation mechanism is thus likely to be largely leaching of base cations and buffering substances from the foliage. The high fluxes are partly due to the fact that these are 60–80 year old trees growing in an open forest structure. The increase in NO3 and NH4 in throughfall in spite of decreased deposition seems likely due to a decrease in foliar uptake, perhaps due to the increasing nitrogen saturation of the catchment soils. These changes may increase the rate of soil microbial activity as nitrogen increases and acidity declines, with consequent effects on water quality of the catchment drainage stream.
Resumo:
Diffuse pollution, and the contribution from agriculture in particular, has become increasingly important as pollution from point sources has been addressed by wastewater treatment. Land management approaches, such as construction of field wetlands, provide one group of mitigation options available to farmers. Although field wetlands are widely used for diffuse pollution control in temperate environments worldwide, there is a shortage of evidence for the effectiveness and viability of these mitigation options in the UK. The Mitigation Options for Phosphorus and Sediment Project aims to make recommendations regarding the design and effectiveness of field wetlands for diffuse pollution control in UK landscapes. Ten wetlands have been built on four farms in Cumbria and Leicestershire. This paper focuses on sediment retention within the wetlands, estimated from annual sediment surveys in the first two years, and discusses establishment costs. It is clear that the wetlands are effective in trapping a substantial amount of sediment. Estimates of annual sediment retention suggest higher trapping rates at sandy sites (0.5–6 t ha�1 yr�1), compared to silty sites (0.02–0.4 t ha�1 yr�1) and clay sites (0.01–0.07 t ha�1 yr�1). Establishment costs for the wetlands ranged from £280 to £3100 and depended more on site specific factors, such as fencing and gateways on livestock farms, rather than on wetland size or design. Wetlands with lower trapping rates would also have lower maintenance costs, as dredging would be required less frequently. The results indicate that field wetlands show promise for inclusion in agri-environment schemes, particularly if capital payments can be provided for establishment, to encourage uptake of these multi-functional features.
Resumo:
The relative contribution of the main mechanisms that control indoor air quality in residential flats was examined. Indoor and outdoor concentration measurements of different type pollutants (black carbon, SO2, O3, NO, NO2,) were monitored in three naturally ventilated residential flats in Athens, Greece. At each apartment, experiments were conducted during the cold as well as during the warm period of the year. The controlling parameters of transport and deposition mechanisms were calculated from the experimental data. Deposition rates of the same pollutant differ according to the site (different construction characteristics) and to the measuring period for the same site (variations in relative humidity and differences in furnishing). Differences in the black carbon deposition rates were attributed to different black carbon size distributions. The highest deposition rates were observed for O3 in the residential flats with the older construction and the highest humidity levels. The calculated parameters as well as the measured outdoor concentrations were used as input data of a one-compartment indoor air quality model, and the indoor concentrations, the production, and loss rates of the different pollutants were calculated. The model calculated concentrations are in good agreement with the measured values. Model simulations revealed that the mechanism that mainly affected the change rate of indoor black carbon concentrations was the transport from the outdoor environment, while the removal due to deposition was insignificant. During model simulations, it was also established that that the change rate of SO2 concentrations was governed by the interaction between the transport and the deposition mechanisms while NOX concentrations were mainly controlled through photochemical reactions and the transport from outdoors.
Resumo:
Understanding the surface O3 response over a “receptor” region to emission changes over a foreign “source” region is key to evaluating the potential gains from an international approach to abate ozone (O3) pollution. We apply an ensemble of 21 global and hemispheric chemical transport models to estimate the spatial average surface O3 response over east Asia (EA), Europe (EU), North America (NA), and south Asia (SA) to 20% decreases in anthropogenic emissions of the O3 precursors, NOx, NMVOC, and CO (individually and combined), from each of these regions. We find that the ensemble mean surface O3 concentrations in the base case (year 2001) simulation matches available observations throughout the year over EU but overestimates them by >10 ppb during summer and early fall over the eastern United States and Japan. The sum of the O3 responses to NOx, CO, and NMVOC decreases separately is approximately equal to that from a simultaneous reduction of all precursors. We define a continental-scale “import sensitivity” as the ratio of the O3 response to the 20% reductions in foreign versus “domestic” (i.e., over the source region itself) emissions. For example, the combined reduction of emissions from the three foreign regions produces an ensemble spatial mean decrease of 0.6 ppb over EU (0.4 ppb from NA), less than the 0.8 ppb from the reduction of EU emissions, leading to an import sensitivity ratio of 0.7. The ensemble mean surface O3 response to foreign emissions is largest in spring and late fall (0.7–0.9 ppb decrease in all regions from the combined precursor reductions in the three foreign regions), with import sensitivities ranging from 0.5 to 1.1 (responses to domestic emission reductions are 0.8–1.6 ppb). High O3 values are much more sensitive to domestic emissions than to foreign emissions, as indicated by lower import sensitivities of 0.2 to 0.3 during July in EA, EU, and NA when O3 levels are typically highest and by the weaker relative response of annual incidences of daily maximum 8-h average O3 above 60 ppb to emission reductions in a foreign region (<10–20% of that to domestic) as compared to the annual mean response (up to 50% of that to domestic). Applying the ensemble annual mean results to changes in anthropogenic emissions from 1996 to 2002, we estimate a Northern Hemispheric increase in background surface O3 of about 0.1 ppb a−1, at the low end of the 0.1–0.5 ppb a−1 derived from observations. From an additional simulation in which global atmospheric methane was reduced, we infer that 20% reductions in anthropogenic methane emissions from a foreign source region would yield an O3 response in a receptor region that roughly equals that produced by combined 20% reductions of anthropogenic NOx, NMVOC, and CO emissions from the foreign source region.
Resumo:
Advances in seasonal forecasting have brought widespread socio-economic benefits. However, seasonal forecast skill in the extratropics is relatively modest, prompting the seasonal forecasting community to search for additional sources of predictability. For over a decade it has been suggested that knowledge of the state of the stratosphere can act as a source of enhanced seasonal predictability; long-lived circulation anomalies in the lower stratosphere that follow stratospheric sudden warmings are associated with circulation anomalies in the troposphere that can last up to two months. Here, we show by performing retrospective ensemble model forecasts that such enhanced predictability can be realized in a dynamical seasonal forecast system with a good representation of the stratosphere. When initialized at the onset date of stratospheric sudden warmings, the model forecasts faithfully reproduce the observed mean tropospheric conditions in the months following the stratospheric sudden warmings. Compared with an equivalent set of forecasts that are not initialized during stratospheric sudden warmings, we document enhanced forecast skill for atmospheric circulation patterns, surface temperatures over northern Russia and eastern Canada and North Atlantic precipitation. We suggest that seasonal forecast systems initialized during stratospheric sudden warmings are likely to yield significantly greater forecast skill in some regions.
Resumo:
We investigate the sensitivity of Northern Hemisphere polar ozone recovery to a scenario in which there is rapid loss of Arctic summer sea ice in the first half of the 21st century. The issue is addressed by coupling a chemistry climate model to an ocean general circulation model and performing simulations of ozone recovery with, and without, an external perturbation designed to cause a rapid and complete loss of summertime Arctic sea ice. Under this extreme perturbation, the stratospheric response takes the form of a springtime polar cooling which is dynamical rather than radiative in origin, and is caused by reduced wave forcing from the troposphere. The response lags the onset of the sea-ice perturbation by about one decade and lasts for more than two decades, and is associated with an enhanced weakening of the North Atlantic meridional overturning circulation. The stratospheric dynamical response leads to a 10 DU reduction in polar column ozone, which is statistically robust. While this represents a modest loss, it has the potential to induce a delay of roughly one decade in Arctic ozone recovery estimates made in the 2006 Scientific Assessment of Ozone Depletion.
Resumo:
The dynamics of Northern Hemisphere major midwinter stratospheric sudden warmings (SSWs) are examined using transient climate change simulations from the Canadian Middle Atmosphere Model (CMAM). The simulated SSWs show good overall agreement with reanalysis data in terms of composite structure, statistics, and frequency. Using observed or model sea surface temperatures (SSTs) is found to make no significant difference to the SSWs, indicating that the use of model SSTs in the simulations extending into the future is not an issue. When SSWs are defined by the standard (wind based) definition, an absolute criterion, their frequency is found to increase by;60% by the end of this century, in conjunction with a;25% decrease in their temperature amplitude. However, when a relative criterion based on the northern annular mode index is used to define the SSWs, no future increase in frequency is found. The latter is consistent with the fact that the variance of 100-hPa daily heat flux anomalies is unaffected by climate change. The future increase in frequency of SSWs using the standard method is a result of the weakened climatological mean winds resulting from climate change, which make it easier for the SSW criterion to be met. A comparison of winters with and without SSWs reveals that the weakening of the climatological westerlies is not a result of SSWs. The Brewer–Dobson circulation is found to be stronger by ;10% during winters with SSWs, which is a value that does not change significantly in the future.
Resumo:
The recovery of the Arctic polar vortex following stratospheric sudden warmings is found to take upward of 3 months in a particular subset of cases, termed here polar-night jet oscillation (PJO) events. The anomalous zonal-mean circulation above the pole during this recovery is characterized by a persistently warm lower stratosphere, and above this a cold midstratosphere and anomalously high stratopause, which descends as the event unfolds. Composites of these events in the Canadian Middle Atmosphere Model show the persistence of the lower-stratospheric anomaly is a result of strongly suppressed wave driving and weak radiative cooling at these heights. The upper-stratospheric and lower-mesospheric anomalies are driven immediately following the warming by anomalous planetary-scale eddies, following which, anomalous parameterized nonorographic and orographic gravity waves play an important role. These details are found to be robust for PJO events (as opposed to sudden warmings in general) in that many details of individual PJO events match the composite mean. Azonal-mean quasigeostrophic model on the sphere is shown to reproduce the response to the thermal and mechanical forcings produced during a PJO event. The former is well approximated by Newtonian cooling. The response can thus be considered as a transient approach to the steady-state, downward control limit. In this context, the time scale of the lower-stratospheric anomaly is determined by the transient, radiative response to the extended absence of wave driving. The extent to which the dynamics of the wave-driven descent of the stratopause can be considered analogous to the descending phases of the quasi-biennial oscillation (QBO) is also discussed.
Resumo:
Hourly data (1994–2009) of surface ozone concentrations at eight monitoring sites have been investigated to assess target level and long–term objective exceedances and their trends. The European Union (EU) ozone target value for human health (60 ppb–maximum daily 8–hour running mean) has been exceeded for a number of years for almost all sites but never exceeded the set limit of 25 exceedances in one year. Second highest annual hourly and 4th highest annual 8–hourly mean ozone concentrations have shown a statistically significant negative trend for in–land sites of Cork–Glashaboy, Monaghan and Lough Navar and no significant trend for the Mace Head site. Peak afternoon ozone concentrations averaged over a three year period from 2007 to 2009 have been found to be lower than corresponding values over a three–year period from 1996 to 1998 for two sites: Cork–Glashaboy and Lough Navar sites. The EU long–term objective value of AOT40 (Accumulated Ozone Exposure over a threshold of 40 ppb) for protection of vegetation (3 ppm–hour, calculated from May to July) has been exceeded, on an individual year basis, for two sites: Mace Head and Valentia. The critical level for the protection of forest (10 ppm–hour from April to September) has not been exceeded for any site except at Valentia in the year 2003. AOT40–Vegetation shows a significant negative trend for a 3–year running average at Cork–Glashaboy (–0.13±0.02 ppm–hour per year), at Lough Navar (–0.05±0.02 ppm–hour per year) and at Monaghan (–0.03±0.03 ppm–hour per year–not statistically significant) sites. No statistically significant trend was observed for the coastal site of Mace head. Overall, with the exception of the Mace Head and Monaghan sites, ozone measurement records at Irish sites show a downward negative trend in peak values that affect human health and vegetation.
Resumo:
1. Bees are one of the most important groups of pollinators in the temperate zone. Although heavy metal pollution is recognised to be a problem affecting large parts of the European Union, we currently lack insights into the effects of heavy metals on wild bee survival and reproduction. 2. We investigated the impact of heavy metal pollution on the wild bee Osmia rufa (Hymenoptera: Megachilidae) by comparing their survival, reproduction and population dynamics along two independent gradients of heavy metal pollution, one in Poland and the other in the United Kingdom. We used trap nests to evaluate the response of fitness and survival parameters of O. rufa. To quantify the levels of pollution, we directly measured the heavy metal concentration in provisions collected by O. rufa. 3. We found that with increasing heavy metal concentration, there was a steady decrease in number of brood cells constructed by females and an increase in the proportion of dead offspring. In the most polluted site, there were typically 3–4 cells per female with 50–60% dead offspring, whereas in unpolluted sites there were 8 to 10 cells per female and only 10–30% dead offspring. Moreover, the bee population growth rate (R0) decreased along the heavy metal pollution gradients. In unpolluted sites, R0 was above 1, whereas in contaminated sites, the values tended to be below 1. 4. Our findings reveal a negative relationship between heavy metal pollution and several fitness parameters of the wild bee O. rufa, and highlight a mechanism whereby the detrimental effects of heavy metal pollution may severely impact wild bee communities.