851 resultados para statistical methods
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information into the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the STrengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and issues of data volume that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA) initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modeling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.
Resumo:
The rise of evidence-based medicine as well as important progress in statistical methods and computational power have led to a second birth of the >200-year-old Bayesian framework. The use of Bayesian techniques, in particular in the design and interpretation of clinical trials, offers several substantial advantages over the classical statistical approach. First, in contrast to classical statistics, Bayesian analysis allows a direct statement regarding the probability that a treatment was beneficial. Second, Bayesian statistics allow the researcher to incorporate any prior information in the analysis of the experimental results. Third, Bayesian methods can efficiently handle complex statistical models, which are suited for advanced clinical trial designs. Finally, Bayesian statistics encourage a thorough consideration and presentation of the assumptions underlying an analysis, which enables the reader to fully appraise the authors' conclusions. Both Bayesian and classical statistics have their respective strengths and limitations and should be viewed as being complementary to each other; we do not attempt to make a head-to-head comparison, as this is beyond the scope of the present review. Rather, the objective of the present article is to provide a nonmathematical, reader-friendly overview of the current practice of Bayesian statistics coupled with numerous intuitive examples from the field of oncology. It is hoped that this educational review will be a useful resource to the oncologist and result in a better understanding of the scope, strengths, and limitations of the Bayesian approach.
Resumo:
It is system dynamics that determines the function of cells, tissues and organisms. To develop mathematical models and estimate their parameters are an essential issue for studying dynamic behaviors of biological systems which include metabolic networks, genetic regulatory networks and signal transduction pathways, under perturbation of external stimuli. In general, biological dynamic systems are partially observed. Therefore, a natural way to model dynamic biological systems is to employ nonlinear state-space equations. Although statistical methods for parameter estimation of linear models in biological dynamic systems have been developed intensively in the recent years, the estimation of both states and parameters of nonlinear dynamic systems remains a challenging task. In this report, we apply extended Kalman Filter (EKF) to the estimation of both states and parameters of nonlinear state-space models. To evaluate the performance of the EKF for parameter estimation, we apply the EKF to a simulation dataset and two real datasets: JAK-STAT signal transduction pathway and Ras/Raf/MEK/ERK signaling transduction pathways datasets. The preliminary results show that EKF can accurately estimate the parameters and predict states in nonlinear state-space equations for modeling dynamic biochemical networks.
Resumo:
Introduction: Pancreatic cancer is the fourth leading cause of cancer-related death among males and females in the United States. Sel-1-like (SEL1L) is a putative tumor suppressor gene that is downregulated in a significant proportion of human pancreatic ductal adenocarcinoma (PDAC). It was hypothesized that SEL1L expression could be down-modulated by somatic mutation, loss of heterozygosity (LOH), CpG island hypermethylation and/or aberrantly expressed microRNAs (miRNAs). Material and methods: In 42 PDAC tumors, the SEL1L coding region was amplified using reverse transcription polymerase chain reaction (RT-PCR), and analyzed by agarose gel electrophoresis and sequenced to search for mutations. Using fluorescent fragment analysis, two intragenic microsatellites in the SEL1L gene region were examined to detect LOH in a total of 73 pairs of PDAC tumors and normal-appearing adjacent tissues. Bisulfite DNA sequencing was performed to determine the methylation status of the SEL1L promoter in 41 PDAC tumors and 6 PDAC cell lines. Using real-time quantitative PCR, the expression levels of SEL1L mRNA and 7 aberrantly upregulated miRNAs that potentially target SEL1L were assessed in 42 PDAC tumor and normal pairs. Statistical methods were applied to evaluate the correlation between SEL1L mRNA and the miRNAs. Further the interaction was determined by functional analysis using a molecular biological approach. Results: No mutations were detected in the SEL1L coding region. More than 50% of the samples displayed abnormally alternate or aberrant spliced transcripts of SEL1L. About 14.5% of the tumors displayed LOH at the CAR/CAL microsatellite locus and 10.7% at the RepIN20 microsatellite locus. However, the presence of LOH did not show significant association with SEL1L downregulation. No methylation was observed in the SEL1L promoter. Statistical analysis showed that SEL1L mRNA expression levels significantly and inversely correlated with the expression of hsa-mir-143, hsa-mir-155, and hsa-mir-223. Functional analysis indicated that hsa-mir-155 acted as a suppressor of SEL1L in PL18 and MDAPanc3 PDAC cell lines. Discussion: Evidence from these studies suggested that SEL1L was possibly downregulated by aberrantly upregulated miRNAs in PDAC. Future studies should be directed towards developing a better understanding of the mechanisms for generation of aberrant SEL1L transcripts, and further analysis of miRNAs that may downregulate SEL1L.
Resumo:
Variable number of tandem repeats (VNTR) are genetic loci at which short sequence motifs are found repeated different numbers of times among chromosomes. To explore the potential utility of VNTR loci in evolutionary studies, I have conducted a series of studies to address the following questions: (1) What are the population genetic properties of these loci? (2) What are the mutational mechanisms of repeat number change at these loci? (3) Can DNA profiles be used to measure the relatedness between a pair of individuals? (4) Can DNA fingerprint be used to measure the relatedness between populations in evolutionary studies? (5) Can microsatellite and short tandem repeat (STR) loci which mutate stepwisely be used in evolutionary analyses?^ A large number of VNTR loci typed in many populations were studied by means of statistical methods developed recently. The results of this work indicate that there is no significant departure from Hardy-Weinberg expectation (HWE) at VNTR loci in most of the human populations examined, and the departure from HWE in some VNTR loci are not solely caused by the presence of population sub-structure.^ A statistical procedure is developed to investigate the mutational mechanisms of VNTR loci by studying the allele frequency distributions of these loci. Comparisons of frequency distribution data on several hundreds VNTR loci with the predictions of two mutation models demonstrated that there are differences among VNTR loci grouped by repeat unit sizes.^ By extending the ITO method, I derived the distribution of the number of shared bands between individuals with any kinship relationship. A maximum likelihood estimation procedure is proposed to estimate the relatedness between individuals from the observed number of shared bands between them.^ It was believed that classical measures of genetic distance are not applicable to analysis of DNA fingerprints which reveal many minisatellite loci simultaneously in the genome, because the information regarding underlying alleles and loci is not available. I proposed a new measure of genetic distance based on band sharing between individuals that is applicable to DNA fingerprint data.^ To address the concern that microsatellite and STR loci may not be useful for evolutionary studies because of the convergent nature of their mutation mechanisms, by a theoretical study as well as by computer simulation, I conclude that the possible bias caused by the convergent mutations can be corrected, and a novel measure of genetic distance that makes the correction is suggested. In summary, I conclude that hypervariable VNTR loci are useful in evolutionary studies of closely related populations or species, especially in the study of human evolution and the history of geographic dispersal of Homo sapiens. (Abstract shortened by UMI.) ^
Resumo:
OBJECTIVES: The aim of the study was to assess whether prospective follow-up data within the Swiss HIV Cohort Study can be used to predict patients who stop smoking; or among smokers who stop, those who start smoking again. METHODS: We built prediction models first using clinical reasoning ('clinical models') and then by selecting from numerous candidate predictors using advanced statistical methods ('statistical models'). Our clinical models were based on literature that suggests that motivation drives smoking cessation, while dependence drives relapse in those attempting to stop. Our statistical models were based on automatic variable selection using additive logistic regression with component-wise gradient boosting. RESULTS: Of 4833 smokers, 26% stopped smoking, at least temporarily; because among those who stopped, 48% started smoking again. The predictive performance of our clinical and statistical models was modest. A basic clinical model for cessation, with patients classified into three motivational groups, was nearly as discriminatory as a constrained statistical model with just the most important predictors (the ratio of nonsmoking visits to total visits, alcohol or drug dependence, psychiatric comorbidities, recent hospitalization and age). A basic clinical model for relapse, based on the maximum number of cigarettes per day prior to stopping, was not as discriminatory as a constrained statistical model with just the ratio of nonsmoking visits to total visits. CONCLUSIONS: Predicting smoking cessation and relapse is difficult, so that simple models are nearly as discriminatory as complex ones. Patients with a history of attempting to stop and those known to have stopped recently are the best candidates for an intervention.
Resumo:
Background: Disturbed interpersonal communication is a core problem in schizophrenia. Patients with schizophrenia often appear disconnected and "out of sync" when interacting with others. This may involve perception, cognition, motor behavior, and nonverbal expressiveness. Although well-known from clinical observation, mainstream research has neglected this area. Corresponding theoretical concepts, statistical methods, and assessment were missing. In recent research, however, it has been shown that objective, video-based measures of nonverbal behavior can be used to reliably quantify nonverbal behavior in schizophrenia. Newly developed algorithms allow for a calculation of movement synchrony. We found that the objective amount of movement of patients with schizophrenia during social interactions was closely related to the symptom profiles of these patients (Kupper et al., 2010). In addition and above the mere amount of movement, the degree of synchrony between patients and healthy interactants may be indicative of various problems in the domain of interpersonal communication and social cognition. Methods: Based on our earlier study, head movement synchrony was assessed objectively (using Motion Energy Analysis, MEA) in 378 brief, videotaped role-play scenes involving 27 stabilized outpatients diagnosed with paranoid-type schizophrenia. Results: Lower head movement synchrony was indicative of symptoms (negative symptoms, but also of conceptual disorganization and lack of insight), verbal memory, patients’ self-evaluation of competence, and social functioning. Many of these relationships remained significant even when corrected for the amount of movement of the patients. Conclusion: The results suggest that nonverbal synchrony may be an objective and sensitive indicator of the severity of symptoms, cognition and social functioning.
Resumo:
The diversity of populations in domestic species offers great opportunities to study genome response to selection. The recently published Sheep HapMap dataset is a great example of characterization of the world wide genetic diversity in sheep. In this study, we re-analyzed the Sheep HapMap dataset to identify selection signatures in worldwide sheep populations. Compared to previous analyses, we made use of statistical methods that (i) take account of the hierarchical structure of sheep populations, (ii) make use of linkage disequilibrium information and (iii) focus specifically on either recent or older selection signatures. We show that this allows pinpointing several new selection signatures in the sheep genome and distinguishing those related to modern breeding objectives and to earlier post-domestication constraints. The newly identified regions, together with the ones previously identified, reveal the extensive genome response to selection on morphology, color and adaptation to new environments.
Resumo:
With the ongoing shift in the computer graphics industry toward Monte Carlo rendering, there is a need for effective, practical noise-reduction techniques that are applicable to a wide range of rendering effects and easily integrated into existing production pipelines. This course surveys recent advances in image-space adaptive sampling and reconstruction algorithms for noise reduction, which have proven very effective at reducing the computational cost of Monte Carlo techniques in practice. These approaches leverage advanced image-filtering techniques with statistical methods for error estimation. They are attractive because they can be integrated easily into conventional Monte Carlo rendering frameworks, they are applicable to most rendering effects, and their computational overhead is modest.
Resumo:
Despite many researches on development in education and psychology, not often is the methodology tested with real data. A major barrier to test the growth model is that the design of study includes repeated observations and the nature of the growth is nonlinear. The repeat measurements on a nonlinear model require sophisticated statistical methods. In this study, we present mixed effects model in a negative exponential curve to describe the development of children's reading skills. This model can describe the nature of the growth on children's reading skills and account for intra-individual and inter-individual variation. We also apply simple techniques including cross-validation, regression, and graphical methods to determine the most appropriate curve for data, to find efficient initial values of parameters, and to select potential covariates. We illustrate with an example that motivated this research: a longitudinal study of academic skills from grade 1 to grade 12 in Connecticut public schools. ^
Resumo:
Improvements in the analysis of microarray images are critical for accurately quantifying gene expression levels. The acquisition of accurate spot intensities directly influences the results and interpretation of statistical analyses. This dissertation discusses the implementation of a novel approach to the analysis of cDNA microarray images. We use a stellar photometric model, the Moffat function, to quantify microarray spots from nylon microarray images. The inherent flexibility of the Moffat shape model makes it ideal for quantifying microarray spots. We apply our novel approach to a Wilms' tumor microarray study and compare our results with a fixed-circle segmentation approach for spot quantification. Our results suggest that different spot feature extraction methods can have an impact on the ability of statistical methods to identify differentially expressed genes. We also used the Moffat function to simulate a series of microarray images under various experimental conditions. These simulations were used to validate the performance of various statistical methods for identifying differentially expressed genes. Our simulation results indicate that tests taking into account the dependency between mean spot intensity and variance estimation, such as the smoothened t-test, can better identify differentially expressed genes, especially when the number of replicates and mean fold change are low. The analysis of the simulations also showed that overall, a rank sum test (Mann-Whitney) performed well at identifying differentially expressed genes. Previous work has suggested the strengths of nonparametric approaches for identifying differentially expressed genes. We also show that multivariate approaches, such as hierarchical and k-means cluster analysis along with principal components analysis, are only effective at classifying samples when replicate numbers and mean fold change are high. Finally, we show how our stellar shape model approach can be extended to the analysis of 2D-gel images by adapting the Moffat function to take into account the elliptical nature of spots in such images. Our results indicate that stellar shape models offer a previously unexplored approach for the quantification of 2D-gel spots. ^
Resumo:
Few studies have investigated causal pathways linking psychosocial factors to each other and to screening mammography. Conflicting hypotheses exist in the theoretic literature regarding the role and importance of subjective norms, a person's perceived social pressure to perform the behavior and his/her motivation to comply. The Theory of Reasoned Action (TRA) hypothesizes that subjective norms directly affect intention; while the Transtheoretical Model (TTM) hypothesizes that attitudes mediate the influence of subjective norms on stage of change. No one has examined which hypothesis best predicts the effect of subjective norms on mammography intention and stage of change. Two statistical methods are available for testing mediation, sequential regression analysis (SRA) and latent variable structural equation modeling (LVSEM); however, software to apply LVSEM to dichotomous variables like intention has only recently become available. No one has compared the methods to determine whether or not they yield similar results for dichotomous variables. ^ Study objectives were to: (1) determine whether the effect of subjective norms on mammography intention and stage of change are mediated by pros and cons; and (2) compare mediation results from the SRA and LVSEM approaches when the outcome is dichotomous. We conducted a secondary analysis of data from a national sample of women veterans enrolled in Project H.O.M.E. (H&barbelow;ealthy O&barbelow;utlook on the M&barbelow;ammography E&barbelow;xperience), a behavioral intervention trial. ^ Results showed that the TTM model described the causal pathways better than the TRA one; however, we found support for only one of the TTM causal mechanisms. Cons was the sole mediator. The mediated effect of subjective norms on intention and stage of change by cons was very small. These findings suggest that interventionists focus their efforts on reducing negative attitudes toward mammography when resources are limited. ^ Both the SRA and LVSEM methods provided evidence for complete mediation, and the direction, magnitude, and standard errors of the parameter estimates were very similar. Because SRA parameter estimates were not biased toward the null, we can probably assume negligible measurement error in the independent and mediator variables. Simulation studies are needed to further our understanding of how these two methods perform under different data conditions. ^