971 resultados para statistical mechanics many-body inverse problem graph-theory
Resumo:
Dissertation to obtain the degree of Doctor in Electrical and Computer Engineering, specialization of Collaborative Networks
Resumo:
Um dos desafios mais importantes para as ciências humanas e particularmente para a educação consiste na compreensão das relações entre o comportamento, a cognição e a linguagem. O presente artigo apresenta uma concepção encorporada da cognição e da linguagem a partir da etologia humana. Baseando-se nas ideias da fenomenologia biológica sobre a intencionalidade, apresentam-se algumas das condições para o acesso científico às relações corpo-mente.
Resumo:
A Thesis submitted for the co-tutelle degree of Doctor in Physics at Universidade Nova de Lisboa and Université Pierre et Marie Curie
Resumo:
სტატიაში დამტკიცებულია წრიული მრავალკუთხედებისათვის შებრუნებული ამოცანის ამოხსნის ერთადერთობა ორი შემთხვევისათვის: პირველი მუდმივი სიმკვრივისა და მეორე დადებითი სიმკვრივისათვის, რომელიც არ იცვლება მიმართულების მიხედვით.
Resumo:
Convex cone, toric variety, graph theory, electrochemical catalysis, oxidation of formic acid, feedback-loopsbifurcations, enzymatic catalysis, Peroxidase reaction, Shil'nikov chaos
Resumo:
Heat transfer, inverse problem, spray cooling
Resumo:
Functional connectivity in human brain can be represented as a network using electroencephalography (EEG) signals. These networks--whose nodes can vary from tens to hundreds--are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which various graph metrics depend upon the network size. To this end, EEGs from 32 normal subjects were recorded and functional networks of three different sizes were extracted. A state-space based method was used to calculate cross-correlation matrices between different brain regions. These correlation matrices were used to construct binary adjacency connectomes, which were assessed with regards to a number of graph metrics such as clustering coefficient, modularity, efficiency, economic efficiency, and assortativity. We showed that the estimates of these metrics significantly differ depending on the network size. Larger networks had higher efficiency, higher assortativity and lower modularity compared to those with smaller size and the same density. These findings indicate that the network size should be considered in any comparison of networks across studies.
Resumo:
An ab initio structure prediction approach adapted to the peptide-major histocompatibility complex (MHC) class I system is presented. Based on structure comparisons of a large set of peptide-MHC class I complexes, a molecular dynamics protocol is proposed using simulated annealing (SA) cycles to sample the conformational space of the peptide in its fixed MHC environment. A set of 14 peptide-human leukocyte antigen (HLA) A0201 and 27 peptide-non-HLA A0201 complexes for which X-ray structures are available is used to test the accuracy of the prediction method. For each complex, 1000 peptide conformers are obtained from the SA sampling. A graph theory clustering algorithm based on heavy atom root-mean-square deviation (RMSD) values is applied to the sampled conformers. The clusters are ranked using cluster size, mean effective or conformational free energies, with solvation free energies computed using Generalized Born MV 2 (GB-MV2) and Poisson-Boltzmann (PB) continuum models. The final conformation is chosen as the center of the best-ranked cluster. With conformational free energies, the overall prediction success is 83% using a 1.00 Angstroms crystal RMSD criterion for main-chain atoms, and 76% using a 1.50 Angstroms RMSD criterion for heavy atoms. The prediction success is even higher for the set of 14 peptide-HLA A0201 complexes: 100% of the peptides have main-chain RMSD values < or =1.00 Angstroms and 93% of the peptides have heavy atom RMSD values < or =1.50 Angstroms. This structure prediction method can be applied to complexes of natural or modified antigenic peptides in their MHC environment with the aim to perform rational structure-based optimizations of tumor vaccines.
Resumo:
Network analysis naturally relies on graph theory and, more particularly, on the use of node and edge metrics to identify the salient properties in graphs. When building visual maps of networks, these metrics are turned into useful visual cues or are used interactively to filter out parts of a graph while querying it, for instance. Over the years, analysts from different application domains have designed metrics to serve specific needs. Network science is an inherently cross-disciplinary field, which leads to the publication of metrics with similar goals; different names and descriptions of their analytics often mask the similarity between two metrics that originated in different fields. Here, we study a set of graph metrics and compare their relative values and behaviors in an effort to survey their potential contributions to the spatial analysis of networks.
Resumo:
The aims of this intervention are to inform the work and strategic direction of BActiveNBFit CIC, and to influence the strategic development and commissioning of key partners such as NHS South of Tyne and Wear PCT and City of Sunderland council. Through identifying:Examples of best practice,Undertaking a pilot study,Confirming needs, priorities and opportunities,Mapping and reviewing effectiveness of current service provision, Providing service options andundertaking options appraisal Objectives: - To target schools using data from National Child Measurement Programme (NCMP), and indices of multiple deprivation from the Office of National StatisticsTo identify the physical fitness ability of the children in order to tailor a structured exercise programme effectively. - To implement a structured childrens exercise programme to improve coordination and motor skills. - To educate the children to understand how the body works so that theory could be married to practice. - To focus on the improvement of muscular fitness and cardio vascular work through a variety of games and exercises. - To implement monitoring and evaluation as outlined within the NOO Standard Evaluation Framework.
Resumo:
Linking the structural connectivity of brain circuits to their cooperative dynamics and emergent functions is a central aim of neuroscience research. Graph theory has recently been applied to study the structure-function relationship of networks, where dynamical similarity of different nodes has been turned into a "static" functional connection. However, the capability of the brain to adapt, learn and process external stimuli requires a constant dynamical functional rewiring between circuitries and cell assemblies. Hence, we must capture the changes of network functional connectivity over time. Multi-electrode array data present a unique challenge within this framework. We study the dynamics of gamma oscillations in acute slices of the somatosensory cortex from juvenile mice recorded by planar multi-electrode arrays. Bursts of gamma oscillatory activity lasting a few hundred milliseconds could be initiated only by brief trains of electrical stimulations applied at the deepest cortical layers and simultaneously delivered at multiple locations. Local field potentials were used to study the spatio-temporal properties and the instantaneous synchronization profile of the gamma oscillatory activity, combined with current source density (CSD) analysis. Pair-wise differences in the oscillation phase were used to determine the presence of instantaneous synchronization between the different sites of the circuitry during the oscillatory period. Despite variation in the duration of the oscillatory response over successive trials, they showed a constant average power, suggesting that the rate of expenditure of energy during the gamma bursts is consistent across repeated stimulations. Within each gamma burst, the functional connectivity map reflected the columnar organization of the neocortex. Over successive trials, an apparently random rearrangement of the functional connectivity was observed, with a more stable columnar than horizontal organization. This work reveals new features of evoked gamma oscillations in developing cortex.
Resumo:
Quantitatively assessing the importance or criticality of each link in a network is of practical value to operators, as that can help them to increase the network's resilience, provide more efficient services, or improve some other aspect of the service. Betweenness is a graph-theoretical measure of centrality that can be applied to communication networks to evaluate link importance. However, as we illustrate in this paper, the basic definition of betweenness centrality produces inaccurate estimations as it does not take into account some aspects relevant to networking, such as the heterogeneity in link capacity or the difference between node-pairs in their contribution to the total traffic. A new algorithm for discovering link centrality in transport networks is proposed in this paper. It requires only static or semi-static network and topology attributes, and yet produces estimations of good accuracy, as verified through extensive simulations. Its potential value is demonstrated by an example application. In the example, the simple shortest-path routing algorithm is improved in such a way that it outperforms other more advanced algorithms in terms of blocking ratio
Resumo:
Over the past decade, significant interest has been expressed in relating the spatial statistics of surface-based reflection ground-penetrating radar (GPR) data to those of the imaged subsurface volume. A primary motivation for this work is that changes in the radar wave velocity, which largely control the character of the observed data, are expected to be related to corresponding changes in subsurface water content. Although previous work has indeed indicated that the spatial statistics of GPR images are linked to those of the water content distribution of the probed region, a viable method for quantitatively analyzing the GPR data and solving the corresponding inverse problem has not yet been presented. Here we address this issue by first deriving a relationship between the 2-D autocorrelation of a water content distribution and that of the corresponding GPR reflection image. We then show how a Bayesian inversion strategy based on Markov chain Monte Carlo sampling can be used to estimate the posterior distribution of subsurface correlation model parameters that are consistent with the GPR data. Our results indicate that if the underlying assumptions are valid and we possess adequate prior knowledge regarding the water content distribution, in particular its vertical variability, this methodology allows not only for the reliable recovery of lateral correlation model parameters but also for estimates of parameter uncertainties. In the case where prior knowledge regarding the vertical variability of water content is not available, the results show that the methodology still reliably recovers the aspect ratio of the heterogeneity.
Resumo:
El programa tracta de fer transformacions de linies simples amb informació en grafs més visuals, definint carrils, simbologies de carril i linies de divisió de trams.
Resumo:
Evolutionary graph theory has been proposed as providing new fundamental rules for the evolution of co-operation and altruism. But how do these results relate to those of inclusive fitness theory? Here, we carry out a retrospective analysis of the models for the evolution of helping on graphs of Ohtsuki et al. [Nature (2006) 441, 502] and Ohtsuki & Nowak [Proc. R. Soc. Lond. Ser. B Biol. Sci (2006) 273, 2249]. We show that it is possible to translate evolutionary graph theory models into classical kin selection models without disturbing at all the mathematics describing the net effect of selection on helping. Model analysis further demonstrates that costly helping evolves on graphs through limited dispersal and overlapping generations. These two factors are well known to promote relatedness between interacting individuals in spatially structured populations. By allowing more than one individual to live at each node of the graph and by allowing interactions to vary with the distance between nodes, our inclusive fitness model allows us to consider a wider range of biological scenarios leading to the evolution of both helping and harming behaviours on graphs.