915 resultados para state-space methods
Resumo:
Fractional differential equations are becoming more widely accepted as a powerful tool in modelling anomalous diffusion, which is exhibited by various materials and processes. Recently, researchers have suggested that rather than using constant order fractional operators, some processes are more accurately modelled using fractional orders that vary with time and/or space. In this paper we develop computationally efficient techniques for solving time-variable-order time-space fractional reaction-diffusion equations (tsfrde) using the finite difference scheme. We adopt the Coimbra variable order time fractional operator and variable order fractional Laplacian operator in space where both orders are functions of time. Because the fractional operator is nonlocal, it is challenging to efficiently deal with its long range dependence when using classical numerical techniques to solve such equations. The novelty of our method is that the numerical solution of the time-variable-order tsfrde is written in terms of a matrix function vector product at each time step. This product is approximated efficiently by the Lanczos method, which is a powerful iterative technique for approximating the action of a matrix function by projecting onto a Krylov subspace. Furthermore an adaptive preconditioner is constructed that dramatically reduces the size of the required Krylov subspaces and hence the overall computational cost. Numerical examples, including the variable-order fractional Fisher equation, are presented to demonstrate the accuracy and efficiency of the approach.
Resumo:
Raman spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM) have been used to compare samples of YBa2Cu3O7 (YBCO) synthesised by the solid-state method and a novel co-precipitation technique. XRD results indicate that YBCO prepared by these two methods are phase pure, however the Raman and SEM results show marked differences between these samples.
Resumo:
Although there is an increasing recognition of the impacts of climate change on communities, residents often resist changing their lifestyle to reduce the effects of the problem. By using a landscape architectural design medium, this paper argues that public space, when designed as an ecological system, has the capacity to create social and environmental change and to increase the quality of the human environment. At the same time, this ecological system can engage residents, enrich the local economy, and increase the social network. Through methods of design, research and case study analysis, an alternative master plan is proposed for a sustainable tourism development in Alacati, Turkey. Our master plan uses local geographical, economic and social information within a sustainable landscape architectural design scheme that addresses the key issues of ecology, employment, public space and community cohesion. A preliminary community empowerment model (CEM) is proposed to manage the designs. The designs address: the coexistence of local agricultural and sustainable energy generation; state of the art water management; and the functional and sustainable social and economic interrelationship of inhabitants, NGOs, and local government.
Resumo:
Transport processes within heterogeneous media may exhibit non-classical diffusion or dispersion; that is, not adequately described by the classical theory of Brownian motion and Fick's law. We consider a space fractional advection-dispersion equation based on a fractional Fick's law. The equation involves the Riemann-Liouville fractional derivative which arises from assuming that particles may make large jumps. Finite difference methods for solving this equation have been proposed by Meerschaert and Tadjeran. In the variable coefficient case, the product rule is first applied, and then the Riemann-Liouville fractional derivatives are discretised using standard and shifted Grunwald formulas, depending on the fractional order. In this work, we consider a finite volume method that deals directly with the equation in conservative form. Fractionally-shifted Grunwald formulas are used to discretise the fractional derivatives at control volume faces. We compare the two methods for several case studies from the literature, highlighting the convenience of the finite volume approach.
Resumo:
Although there is an increasing recognition of the impacts of climate change on communities, residents often resist changing their lifestyle to reduce the effects of the problem. By using a landscape architectural design medium, this paper argues that public space, when designed as an ecological system, has the capacity to create social and environmental change and to increase the quality of the human environment. At the same time, this ecological system can engage residents, enrich the local economy, and increase the social network. Through methods of design, research and case study analysis, an alternative master plan is proposed for a sustainable tourism development in Alacati, Turkey. Our master plan uses local geographical, economic and social information within a sustainable landscape architectural design scheme that addresses the key issues of ecology, employment, public space and community cohesion. A preliminary community empowerment model (CEM) is proposed to manage the designs. The designs address: the coexistence of local agricultural and sustainable energy generation; state of the art water management; and the functional and sustainable social and economic interrelationship of inhabitants, NGOs, and local government.
Resumo:
Transport processes within heterogeneous media may exhibit non- classical diffusion or dispersion which is not adequately described by the classical theory of Brownian motion and Fick’s law. We consider a space-fractional advection-dispersion equation based on a fractional Fick’s law. Zhang et al. [Water Resources Research, 43(5)(2007)] considered such an equation with variable coefficients, which they dis- cretised using the finite difference method proposed by Meerschaert and Tadjeran [Journal of Computational and Applied Mathematics, 172(1):65-77 (2004)]. For this method the presence of variable coef- ficients necessitates applying the product rule before discretising the Riemann–Liouville fractional derivatives using standard and shifted Gru ̈nwald formulas, depending on the fractional order. As an alternative, we propose using a finite volume method that deals directly with the equation in conservative form. Fractionally-shifted Gru ̈nwald formulas are used to discretise the Riemann–Liouville fractional derivatives at control volume faces, eliminating the need for product rule expansions. We compare the two methods for several case studies, highlighting the convenience of the finite volume approach.
Resumo:
A Space for Spirituality: Dutton Park Community House Exhibition of QUT Student Design Work for Murri Watch Men’s Shed, Dutton Park. As designers it is important to work with communities to develop inclusive spaces and be mindful of the diversity of cultures, histories and indeed spirituality. This exhibition includes a selection of proposals from QUT Interior Design students for the adaptation of the Murri Watch Men’s Shed, Dutton Park. The designs respond to local community narratives and environmental qualities, such as site texture, landscape and light to propose a dwelling space for spirituality and gathering.
Resumo:
It could be argued that architecture has an inherent social responsibility to enrich the urban and spatial environments for the city’s occupants. However how we define quality, and how ‘places’ can be designed to be fair and equitable, catering for individuals on a humanistic and psychological level, is often not clearly addressed. Lefebvre discusses the idea of the ‘right to the city’; the belief that public space design should facilitate freedom of expression and incite a sense of spatial ownership for its occupants in public/commercial precincts. Lefebvre also points out the importance of sensory experience in the urban environment. “Street-scape theatrics” are performative activities that summarise these two concepts, advocating the ‘right to the city’ by way of art as well as providing sensual engagement for city users. Literature discusses the importance of Street-scape Theatrics however few sources attempt to discuss this topic in terms of how to design these spaces/places to enhance the city on both a sensory and political level. This research, grounded in political theory, investigates the case of street music, in particular busking, in the city of Brisbane, Australia. Street culture is a notion that already exists in Brisbane, but it is heavily controlled especially in central locations. The study discusses how sensory experience of the urban environment in Brisbane can be enriched through the design for busking; multiple case studies, interviews, observations and thematic mappings provide data to gather an understanding of how street performers see and understand the built form. Results are sometime surprisingly incongruous with general assumptions in regards to street artist as well as the established political and ideological framework, supporting the idea that the best and most effective way of urban hacking is working within the system. Ultimately, it was found that the Central Business District in Brisbane, Australia, could adopt certain political and design tactics which attempt to reconcile systematic quality control with freedom of expression into the public/commercial sphere, realism upheld. This can bridge the gap between the micro scale of the body and the macro of the political economy through freedom of expression, thus celebrating the idiosyncratic nature of the city.
Resumo:
Fractional differential equations are becoming increasingly used as a powerful modelling approach for understanding the many aspects of nonlocality and spatial heterogeneity. However, the numerical approximation of these models is demanding and imposes a number of computational constraints. In this paper, we introduce Fourier spectral methods as an attractive and easy-to-code alternative for the integration of fractional-in-space reaction-diffusion equations described by the fractional Laplacian in bounded rectangular domains ofRn. The main advantages of the proposed schemes is that they yield a fully diagonal representation of the fractional operator, with increased accuracy and efficiency when compared to low-order counterparts, and a completely straightforward extension to two and three spatial dimensions. Our approach is illustrated by solving several problems of practical interest, including the fractional Allen–Cahn, FitzHugh–Nagumo and Gray–Scott models, together with an analysis of the properties of these systems in terms of the fractional power of the underlying Laplacian operator.
Resumo:
Background Spatial analysis is increasingly important for identifying modifiable geographic risk factors for disease. However, spatial health data from surveys are often incomplete, ranging from missing data for only a few variables, to missing data for many variables. For spatial analyses of health outcomes, selection of an appropriate imputation method is critical in order to produce the most accurate inferences. Methods We present a cross-validation approach to select between three imputation methods for health survey data with correlated lifestyle covariates, using as a case study, type II diabetes mellitus (DM II) risk across 71 Queensland Local Government Areas (LGAs). We compare the accuracy of mean imputation to imputation using multivariate normal and conditional autoregressive prior distributions. Results Choice of imputation method depends upon the application and is not necessarily the most complex method. Mean imputation was selected as the most accurate method in this application. Conclusions Selecting an appropriate imputation method for health survey data, after accounting for spatial correlation and correlation between covariates, allows more complete analysis of geographic risk factors for disease with more confidence in the results to inform public policy decision-making.
Resumo:
The crystal structure of 5'-amino-5'-deoxyadenosine (5'-Am.dA) p-toluenesulfonate has been determined by X-ray crystallographic methods. It belongs to the orthorhombic space group P2(1)2(1)2(1) with a = 7.754(3)Angstrom, b = 8.065(1)Angstrom and c = 32.481(2)Angstrom. This nucleoside side shows a syn conformation about the glycosyl bond and C2'-endo-C3'-exo puckering for the ribose sugar. The orientation of N5' atom is gauche-trans about the exocyclic C4'-C5' bond. The amino nitrogen N5' forms a trifurcated hydrogen bond with N3, O9T and O4' atoms. Adenine bases form A.A.A triplets through hydrogen bonding between N6, N7 and N1 atoms of symmetry related nucleoside molecules.
Resumo:
In this paper we have discussed limits of the validity of Whitham's characteristic rule for finding successive positions of a shock in one space dimension. We start with an example for which the exact solution is known and show that the characteristic rule gives correct result only if the state behind the shock is uniform. Then we take the gas dynamic equations in two cases: one of a shock propagating through a stratified layer and other down a nonuniform tube and derive exact equations for the evolution of the shock amplitude along a shock path. These exact results are then compared with the results obtained by the characteristic rule. The characteristic rule not only incorrectly accounts for the deviation of the state behind the shock from a uniform state but also gives a coefficient in the equation which differ significantly from the exact coefficients for a wide range of values of the shock strength.