932 resultados para stability study
Resumo:
Objectives: The aim of this study was to compare the long-term clinical effects produced by subepithelial connective tissue graft (SCTG) and guided tissue regeneration combined with demineralized freeze-dried bone allograft (GTR-DFDBA) in the treatment of gingival recessions in a 30-month follow-up clinical trial. Methods: Twenty-four defects were treated in 12 patients who presented canine or pre-molar Miller class I and/or II bilateral gingival recessions. GTR-DFDBA and SCTG treatments were performed in a randomized selection in a split-mouth design. The clinical measurements included root coverage (RC), gingival recession (GR), probing depth (PD), clinical attachment level (CAL) and keratinized tissue width (KTW). These clinical parameters were evaluated at baseline and after 6, 18 and 30 months post-surgery. Results: The changes in RC, GR, PD and CAL did not show significant differences between groups (p > 0.05). Both procedures promoted similar RC (GTR-DFDBA: 87% and SCTG: 95.5%) and similar reduction in GR (GTR-DFDBA: 3.25 mm and SCTG: 3.9 mm), PD (GTR-DFDBA: 1.6 mm and SCTG: 1.2 mm) and CAL (GTR-DFDBA: 4.9 mm and SCTG: 5.0 mm). The increase in KTW was significantly higher (p = 0.02) in the SCTG group (3.5 mm) than in the GTR-DFDBA group (2.4 mm). Conclusions: Both techniques for treatment of gingival recession (SCTG and GTR-DFDBA) lead to favourable and long-term stable results, but SCTG promoted a more favourable increase in keratinized tissue. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Aim Primary implant stability can be compromised by overdrilling of the implant bed. Filling the gap between the implant and the bone with a highly viscous copolymer of polylactic and polyglycolic acid (PLA/PGA) might stabilize the implant and thus supply osseointegration. The aim of this study was to evaluate implants installed in overdrilled beds associated with PLA/PGA in rats tibia model by means of removal torque test and fluorochrome analysis. Materials and methods For this experiment two groups were selected: in the test group 0.4 mm overdrilled defects (2.0 in diameter and 3 mm long ) were produced in the right tibia of seven rats and implants were placed covered with PLA/PGA biomaterial to fill the gap; the control group was not overdrilled and the implants were placed without the biomaterial. Implants of 1.6 mm in diameter and 3 mm long where placed into all defects. Calcein, alizarin and oxytetracyclin were injected at 7, 15 and 21 postoperative days, respectively, and the animals were sacrificed at 35 postoperative day. Results The results showed that all the implants achieved osseointegration. There were no statistical significance differences in torque-reverse and fluorocrome analysis (P>0.05). Conclusion We can conclude that overdrilled defects filled with PLA/PGA did not disturb osseointegration in this experimental model. © ARIESDUE.
Resumo:
The aim of the study was to evaluate mechanical behavior of implants inserted in three substrates, by measuring the pullout strength and the relative stiffness. 32 implants (Master Porous-Conexao, cylindrical, external hexagon, and surface treatment) were divided into 4 groups (n = 8): pig rib bone, polyurethane Synbone, polyurethane Nacional 40 PCF, and pinus wood. Implants were installed with the exact distance of 5 mm of another implant. The insertion torque (N·cm) was quantified using the digital Kratos torque meter and the pullout test (N) was performed by an axial traction force toward the long axis of the implant (2 min/mm) through mount implant devices attached to a piece adapted to a load cell of 200 Kg of a universal testing machine (Emic DL10000). Data of insertion torque and maximum pullout force were submitted to one-way ANOVA and Bonferroni tests (α = 0.05). Polyurethane Nacional 40 PCF and pinus wood showed the highest values of insertion torque and pullout force, with significant statistical difference (P < 0.05) with other groups. The analysis showed stiffness materials with the highest values for primary stability. © 2013 Nathalia Ferraz Oliscovicz et al.
Resumo:
Atrophic mandible fractures are frequently a challenge to stabilize. This study evaluated, through mechanical testing in vitro, the number of locking screws that is sufficient to withstand loading when applied with a locking reconstruction plate in the fixation of atrophic mandible fractures. Polyurethane mandibles with a simulated linear fracture at the midline were used as substratum. Results show that resistance of the fixation is poor when one and two screws are used on each side of the fracture. Three screws on each side of the fracture significantly increases the resistance to displacement. However, no additional strength is added to the construct when more than three screws per side are used. © 2013 International Association of Oral and Maxillofacial Surgeons.
Resumo:
The catalytic properties of monomodal microporous and bimodal micro-mesoporous zeolites were investigated in the gas-phase dehydration of glycerol. The desilication methodology used to produce the mesoporous zeolites minimized diffusion limitations and increased glycerol conversion in the catalytic reaction due to the hierarchical system of secondary pores created in the zeolite crystals. The chemical and structural properties of the catalyst were studied by X-ray diffraction, nitrogen adsorption-desorption isotherms, NH3-TPD and pyridine chemisorption followed by IR-spectroscopy. Although the aim was to desilicate to create mesoporosity in the zeolite crystals, the desilication promoted the formation of extra-framework aluminum species that affected the conversion of glycerol and the products distribution. The results clearly show that the mesoporous zeolites with designed mesopore structure allowed a rapid diffusion and consequently improved the reaction kinetics. However, especial attention must be given to the desilication procedure because the severity of the treatment negatively interfered on the Brønsted and Lewis acid sites relative concentration and, consequently, in the efficiency of the catalysis performed by these materials. On the other hand, during the catalytic reaction, the intracrystalline mesopores allowed carbonaceous compounds to be deposited herein, resulting in less blocked micropores and catalysts with higher long-term stability.
Resumo:
Rubber production in the rubber tree [Hevea brasiliensis (Willd. ex Adr. de Juss.) Muell. Arg.] can be expressed differently in different environments. Thus the objective of the present study was to select productive progenies, stable and responsive in time and among locations. Thirty progenies were assessed by early yield tests at three ages and in three locations. A randomized block design was used with three replications and ten plants per plot, in 3 × 3 m spacing. The procedure of the mixed linear Reml/Blup model-restricted maximum likelihood/best non-biased linear prediction was used in the genetic statistical analyses. In all the individual analyses, the values observed for the progeny average heritability (ĥpa 2) were greater than those of the additive effect based on single individuals (ĥa 2) and within plot additive (ĥad 2). In the joint analyses in time, there was genotype × test interaction in the three locations. When 20 % of the best progenies were selected the predicted genetic gains were: Colina GG = 24.63 %, Selvíria GG = 13.63 %, and Votuporanga GG = 25.39 %. Two progenies were among the best in the analyses in the time and between locations. In the joint analysis among locations there was only genotype × location interaction in the first early test. In this test, selecting 20 %, the general predicted genetic gain was GG = 25.10 %. Identifying progenies with high and stable yield over time and among locations contributes to the efficiency of the genetic breeding program. The relative performance of the progenies varies depending of the age of early selection test. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Two different cationic polymers of the same chemical type and with very similar chemical structures were reacted with a natural bentonite over a wide range of polymer/clay ratios. This study involved the synthesis of cationic aliphatic ammonium polyionenes, specifically 3,6-ionene and 3,6-dodecylionene. Ionenes are ion-containing polymers that contain quaternary nitrogen atoms in the main macromolecular chain as opposed to a pendant chain. The CHN content, basal spacing, and elemental composition of each of the polymer-clay complexes were analyzed by X-ray diffraction, X-ray fluorescence, and thermogravimetry. All the polycations reacted to form interlayer complexes with clay, which displaced more Na+ and little Ca2+. Sodium and calcium were both present as interlayer cations in the clay and its complexes. The TG/DTG curves show that both polymers underwent thermal degradation in more than one stage. Specifically, 3,6-ionene was found to undergo two stages of decomposition and 3,6-dodecylionene undergo three stages. The behavior of the TG/DTG curves and the activation energy values suggest that 3,6-dodecylionene (E = 174,85 kJ mol-1) complexes have greater thermal stability than 3,6-ionene (E = 115,52 kJ mol-1) complexes. The mechanism of degradation suggests a direct interaction with the dodecyl chain containing 12 carbons, which are present in 3,6-dodecylionene but not in 3,6-ionene. © 2012 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
An efficient cryopreservation protocol was developed for mature seeds of Oncidium flexuosum Sims. Seed morphology, protocorm formation, and early seedling development were also assessed. The effects of phloroglucinol and Supercool X-1000® as cryoprotectant additives in the vitrification solution were investigated. Dehydration using the plant vitrification solution 2 (PVS2) for 60 and 120 min prior to immersion in liquid nitrogen promoted the highest frequency of in vitro seed germination 6 weeks following culture on half-strength Murashige and Skoog (1/2 MS) medium. Mature seeds submitted to vitrification for 120 min in PVS2 and 1 % phloroglucinol at 0 °C enhanced germination by 68 %, whereas in PVS2 and 1 % Supercool X-1000® germination was just moderately enhanced (26 %). In vitro-germinating seedlings developed healthy shoots and roots without the use of plant growth regulators. After 6 months of growth, there were no differences between in vitro- and ex vitro-grown seedlings for various phenotypic characteristics, including shoot length, number of leaves, number and length of roots, and fresh and dry weight. Seedlings were transferred to greenhouse conditions and successfully acclimatized, further developing into normal plants with over 90 % survival. Comparative analysis of seedlings from control and vitrified seeds using flow cytometry indicated that no change in ploidy levels occurred as a result of cryopreservation, therefore maintaining seedlings genetic stability. In this study, vitrification with PVS2 for 120 min with the addition of 1 % phloroglucinol offers a simple, safe, and feasible protocol for cryopreservation of O. flexuosum mature seeds. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Chitosan-DNA nanoparticles employed in gene therapy protocols consist of a neutralised, stoichiometric core and a shell of the excess of chitosan which stabilises the particles against further coagulation. At low ionic strength, these nanoparticles possess a high stability; however, as the ionic strength increases, it weakens the electrostatic repulsion which can play a decisive part in the formation of highly aggregated particles. In this study, new results about the effect of ionic strength on the colloidal stability of chitosan-DNA nanoparticles were obtained by studying the interaction between chitosans of increasing molecular weights (5, 10, 16, 29, 57 and 150 kDa) and calf thymus DNA. The physicochemical properties of polyplexes were investigated by means of dynamic light scattering, static fluorescence spectroscopy, optic microscopy, transmission electronic microscopy and gel electrophoresis. After subsequent addition of salt to the nanoparticles solution, secondary aggregation increased the size of the polyplexes. The nanoparticles stability decreased drastically at the ionic strengths 150 and 500 mM, which caused the corresponding decrease in the thickness of the stabilising shell. The morphologies of chitosan/DNA nanoparticles at those ionic strengths were a mixture of large spherical aggregates, toroids and rods. The results indicated that to obtain stable chitosan-DNA nanoparticles, besides molecular weight and N/P ratio, it is quite important to control the ionic strength of the solution. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
In this study, we report on a new route of PEGylation of superparamagnetic iron oxide nanoparticles (SPIONs) by polycondensation reaction with carboxylate groups. Structural and magnetic characterizations were performed by X-ray diffractometry (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and vibrating sample magnetometry (VSM). The XRD confirmed the spinel structure with a crystallite average diameter in the range of 3.5-4.1 nm in good agreement with the average diameter obtained by TEM (4.60-4.97 nm). The TGA data indicate the presence of PEG attached onto the SPIONs' surface. The SPIONs were superparamagnetic at room temperature with saturation magnetization (M S) from 36.7 to 54.1 emu/g. The colloidal stability of citrate- and PEG-coated SPIONs was evaluated by means of dynamic light scattering measurements as a function of pH, ionic strength, and nature of dispersion media (phosphate buffer and cell culture media). Our findings demonstrated that the PEG polymer chain length plays a key role in the coagulation behavior of the Mag-PEG suspensions. The excellent colloidal stability under the extreme conditions we evaluated, such as high ionic strength, pH near the isoelectric point, and cell culture media, revealed that suspensions comprising PEG-coated SPION, with PEG of molecular weight 600 and above, present steric stabilization attributed to the polymer chains attached onto the surface of SPIONs. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Solid-state compounds of yttrium and lanthanide chelates of ethylenediaminetetraacetic acid have been synthesized. Simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), theoretical and experimental infrared spectroscopy (FTIR), elemental analysis, complexometry and TG-DSC coupled to FTIR were used to characterize and to study the thermal decomposition of these compounds. The results provided information about the composition, dehydration, thermal stability, thermal decomposition and identification of gaseous products evolved during the thermal decomposition of these compounds. The theoretical and experimental spectroscopic data suggest the possible modes of coordination of the ligand with the lanthanum and terbium metal ions. © 2013 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
Bicuíba belongs to the Virola bicuhyba (Schott ex Spreng.) Warb species, Miristicaceas (Myristicaceae) family, which is frequently found in the Atlantic Forest of South and Southeast Brazil. Extraction of the Bicuíba oil was carried out and characterized by gas chromatography. The composition of in nature of this oil indicates that there is a predominance of saturated fatty acids with ~35 % lauric acid and ~40 % myristic acid. Details concerning the thermal behavior were evaluated by thermogravimetry, differential thermal analysis, and differential scanning calorimetry under oxygen and nitrogen atmospheres, showing thermal stability between 208 and 210 °C, respectively. Additionally, the kinetic studies were evaluated from several heating rates with a sample mass of 5 and 20 mg in open crucibles. The obtained data were evaluated with the isoconversional method kinetic, where the values of activation energy (Ea/kJ mol-1) were plotted in function of the conversion degree (α). © 2013 Akadémiai Kiadó, Budapest, Hungary.
Resumo:
We suggest a time-dependent mean-field hydrodynamic model for a binary dipolar boson-fermion mixture to study the stability and collapse of fermions in the 164Dy-161Dy mixture. The condition of stability of the dipolar mixture is illustrated in terms of phase diagrams. A collapse is induced in a disk-shaped stable binary mixture by jumping the interspecies contact interaction from repulsive to attractive by the Feshbach resonance technique. The subsequent dynamics is studied by solving the time-dependent mean-field model including three-body loss due to molecule formation in boson-fermion and boson-boson channels. Collapse and fragmentation in the fermions after subsequent explosions are illustrated. The anisotropic dipolar interaction leads to anisotropic fermionic density distribution during collapse. This study is carried out in three-dimensional space using realistic values of dipolar and contact interactions. © 2013 American Physical Society.
Resumo:
Microbial enzymes have been used for various biotechnological applications; however, enzyme stabilization remains a challenge for industries and needs to be considered. This study describes the effects of spray-drying conditions on the activity and stability of β-fructofuranosidase from Fusarium graminearum. The extracellular enzyme β-fructofuranosidase was spray dried in the presence of stabilizers, including starch (Capsul) (SC), microcrystalline cellulose (MC), trehalose (TR), lactose (LC) and β-cyclodextrin (CD). In the presence of TR (2% w/v), the enzymatic activity was fully retained. After 1 year of storage, 74% of the enzymatic activity was maintained with the CD stabilizer (10% w/v). The residual activity was maintained as high as 80% for 1 h at 70°C when MC, SC and CD (5% w/v) stabilizers were used. Spray drying with carbohydrates was effective in stabilizing the F. graminearum β-fructofuranosidase, improved enzymatic properties compared to the soluble enzyme and demonstrated a potential use in future biotechnology applications. © 2013 Informa UK Ltd. All rights reserved.
Resumo:
Glossoscolex paulistus (HbGp) hemoglobin is an oligomeric protein, presenting a quaternary structure constituted by 144 globin and 36 non-globin chains (named linkers) with a total molecular mass of 3.6MDa. SDS effects on the oxy-HbGp thermal stability were studied, by DLS and SAXS, at pH 5.0, 7.0 and 9.0. DLS and SAXS data show that the SDS-oxy-HbGp interactions induce a significant decrease of the protein thermal stability, with the formation of larger aggregates, at pH 5.0. At pH 7.0, oxy-HbGp undergoes complete oligomeric dissociation, with increase of temperature, in the presence of SDS. Besides, oxy-HbGp 3.0mg/mL, pH 7.0, in the presence of SDS, has the oligomeric dissociation process reduced as compared to 0.5mg/mL of protein. At pH 9.0, oxy-HbGp starts to dissociate at 20°C, and the protein is totally dissociated at 50°C. The thermal dissociation kinetic data show that oxy-HbGp oligomeric dissociation at pH 7.0, in the presence of SDS, is strongly dependent on the protein concentration. At 0.5mg/mL of protein, the oligomeric dissociation is complete and fast at 40 and 42°C, with kinetic constants of (2.1±0.2)×10-4 and (5.5±0.4)×10-4s-1, respectively, at 0.6mmol/L SDS. However, at 3.0mg/mL, the oligomeric dissociation process starts at 46°C, and only partial dissociation, accompanied by aggregates formation is observed. Moreover, our data show, for the first time, that, for 3.0mg/mL of protein, the oligomeric dissociation, denaturation and aggregation phenomena occur simultaneously, in the presence of SDS. Our present results on the surfactant-HbGp interactions and the protein thermal unfolding process correspond to a step forward in the understanding of SDS effects. © 2013 Elsevier B.V.