862 resultados para spore-crystal toxicity
Resumo:
A new 3-D zinc phosphate, [C5N2H14][Zn-2(PO3(OH))(3)], has been synthesised under solvothermal conditions in the presence of 1-methylpiperazine. The structure, determined by single-crystal X-ray diffraction at 293 K (RMM = 520.9, orthorhombic, space group P2(1)2(1)2(1); a = 10.0517(2) &ANGS;, b = 10.4293(2) &ANGS; and c = 14.9050(5) &ANGS;; V = 1562.52 &ANGS;(3); Z = 4; R(F) = 2.60%, wR(F) = 2.93%), consists of vertex linked ZnO4 and PO3(OH) tetrahedra assembled into (4.8) net sheets which in turn are linked through further PO3(OH) units to generate a 3-D framework. 1-Methylpiperazinium cations reside within the 3-D channel system, held in place by a strong network of hydrogen bonds. The (4.8) net sheets occur in a number of zeolite structures e.g. ABW and GIS and related zinc phosphate phases. © 2004 Academie des sciences. Published by Elsevier SAS. All rights reserved.
Resumo:
The degeneration of dopaminergic neurons in the substantia nigra has been linked to the formation of the endogenous neurotoxin 5-S-cysteinyl-dopamine. Sulforaphane (SFN), an isothiocyanate derived from the corresponding precursor glucosinolate found in cruciferous vegetables has been observed to exert a range of biological activities in various cell populations. In this study, we show that SFN protects primary cortical neurons against 5-S-cysteinyl-dopamine induced neuronal injury. Pre-treatment of cortical neurons with SFN (0.01-1 microM) resulted in protection against 5-S-cysteinyl-dopamine-induced neurotoxicity, which peaked at 100 nM. This protection was observed to be mediated by the ability of SFN to modulate the extracellular signal-regulated kinase 1 and 2 and the activation of Kelch-like ECH-associated protein 1/NF-E2-related factor-2 leading to the increased expression and activity of glutathione-S-transferase (M1, M3 and M5), glutathione reductase, thioredoxin reductase and NAD(P)H oxidoreductase 1. These data suggest that SFN stimulates the NF-E2-related factor-2 pathway of antioxidant gene expression in neurons and may protect against neuronal injury relevant to the aetiology of Parkinson's disease.
Resumo:
Two new complex salts of the form (Bu4N)(2)[Ni(L)(2)] (1) and (Ph4P)(2)[Ni(L)(2)] (2) and four heteroleptic complexes cis-M(PPh3)(2)(L) [M = Ni(II) (3), Pd(II) (4), L = 4-CH3OC6H4SO2N=CS2] and cis-M(PPh3)(2)(L') [M = Pd(II) (5), Pt(II) (6), L' = C6H5SO2N=CS2] were prepared and characterized by elemental analyses, IR, H-1, C-13 and P-31 NMR and UV-Vis spectra, solution and solid phase conductivity measurements and X-ray crystallography. A minor product trans-Pd(PPh3)(2)(SH)(2), 4a was also obtained with the synthesis of 4. The NiS4 and MP2S2 core in the complex salts and heteroleptic complexes are in the distorted square-plane whereas in the trans complex, 4a the centrosymmetric PdS2P2 core is perforce square planar. X-ray crystallography revealed the proximity of the ortho phenyl proton of the PPh3 ligand to Pd(II) showing rare intramolecular C-H center dot center dot center dot Pd anagostic binding interactions in the palladium cis-5 and trans-4a complexes. The complex salts with sigma(rt) values similar to 10 (5) S cm (1) show semi-conductor behaviors. The palladium and platinum complexes show photoluminescence properties in solution at room temperature.
Resumo:
The coordination behavior of pyridylmethylthioether type of organic moieties having N2S2 donor set [L-1=1,2-bis(2-pyridylmethylthio)ethane, L-2 = 1,3-bis(2-pyridylmethyl-thio)propane and L-3 = 1,4-bis(2-pyridylmethylthio)butane] with copper(II) chloride and copper(II) bromide have been studied in different chemical environments. Copper(II) chloride assisted C-S bond cleavage of the organic moieties leading to the formation of copper(II) picolinate derivatives, whereas, under similar experimental conditions, no C-S bond cleavage was observed in the reaction with copper(II) bromide. The resulted copper(II) complexes isolated from the different mediums have been characterized by spectroscopic and X-ray crystallographic tools.
Resumo:
Three novel mixed bridged trinuclear and one tetranuclear copper(II) complexes of tridentate NNO donor Schiff base ligands [Cu-3(L-1)(2)(mu(LI)-N-3)(2)(CH3OH)(2)(BF2)(2)] (1), [Cu-3(L-1)(2)(mu(LI)-NO3-I kappa O.2 kappa O')(2)] (2), [Cu-3(L-2)(2)(mu(LI)-N-3)(2)(mu-NOI-I kappa O 2 kappa O')(2)] (3) and [Cu-4(L-3)(2)(mu(LI)-N-3)(4)(mu-CH3COO-I kappa O 2 kappa O')(2)] (4) have been synthesized by reaction of the respective tridentate ligands (L-1 = 2[1-(2-dimethylamino-ethylimino)-ethyl]-phenol, L-2 = 2[1-(2-diethylamino-ethylimino)-ethyl]-phenol, L-3 = 2-[1-(2-dimethylamino-ethylimino)-methyl]-phenol) with the corresponding copper(II) salts in the presence of NaN3 The complexes are characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements Complex 1 is composed of two terminal [Cu(L-1)(mu(LI)-N-3)] units connected by a central [Cu(BF4)(2)] unit through nitrogen atoms of end-on azido ligands and a phenoxo oxygen atom of the tridentate ligand The structures of 2 and 3 are very similar, the only difference is that the central unit is [Cu(NO1)(2)] and the nitrate group forms an additional mu-NO3-I kappa O 2 kappa O' bridge between the terminal and central copper atoms In complex 4, the central unit is a di-mu(L1)-N-3 bridged dicopper entity, [Cu-2(mu(L1)-N-3)(2)(CH3COO)(2)] that connects two terminal [Cu(L-3)(mu(L1)-N-3)] units through end-on azido; phenoxo oxygen and mu-CH3COO-1 kappa O center dot 2 kappa O' triple bridges to result in a tetranuclear unit Analyses of variable-temperature magnetic susceptibility data indicates that there is a global weak antiferromagnetic interaction between the copper(II) ions in complexes 1-3, with the exchange parameter J of -9 86, -11 6 and -19 98 cm(-1) for 1-3, respectively In complex 4 theoretical calculations show the presence of an antiferromagnetic coupling in the triple bridging ligands (acetato, phenoxo and azido) while the interaction through the double end-on azido bridging ligand is strongly ferromagnetic.
Resumo:
Two series of zinc(II) complexes of two Schiff bases (H2L1 and H2L2) formulated as [Zn(HL1/HL2)]ClO4 (1a and 1b) and [Zn(L1/L2)] (2a and 2b), where H2L1 = 1,8-bis(salicylideneamino)-3,6-dithiaoctane and H2L2 = 1,9-bis(salicylideneamino)-3,7-dithianonane, have been prepared and isolated in pure form by changing the chemical environment. Elemental, spectral, and other physicochemical results characterize the complexes. A single crystal X-ray diffraction study confirms the structure of [Zn(HL1)]ClO4 (1a). In 1a, zinc(II) has a distorted octahedral environment with a ZnO2N2S2 chromophore.
Resumo:
The synthesis of a dithiol-functionalized pyrene derivative is reported, together with studies of interactions between this receptor (and other related pyrenes) and nitroaromatic compounds (NACs), in both solution and in the solid state. Spectroscopic analysis in solution and X-ray crystallographic analysis of cocrystals of pyrene and NACs in the solid state indicate that supramolecular interactions lead to the formation of defined pi-pi stacked complexes. The dithiolfunctionalized pyrene derivative can be used to modify the surface of a gold quartz crystal microbalance (QCM) to create a unique π-electron rich surface, which is able to interact with electron poor aromatic compounds. For example, exposure of the modified QCM surface to the nitroaromatic compound 2,4-dinitrotoluene (DNT) in solution results in a reduction in the resonant frequency of the QCM as a result of supramolecular interactions between the electron-rich pyrenyl surface layer and the electron-poor DNT molecules. These results suggest the potential use of such modified QCM surfaces for the detection of explosive NACs.
Resumo:
Magmas in volcanic conduits commonly contain microlites in association with preexisting phenocrysts, as often indicated by volcanic rock textures. In this study, we present two different experiments that inves- tigate the flow behavior of these bidisperse systems. In the first experiments, rotational rheometric methods are used to determine the rheology of monodisperse and polydisperse suspensions consisting of smaller, prolate particles (microlites) and larger, equant particles (phenocrysts) in a bubble‐free Newtonian liquid (silicate melt). Our data show that increasing the relative proportion of prolate microlites to equant pheno- crysts in a magma at constant total particle content can increase the relative viscosity by up to three orders of magnitude. Consequently, the rheological effect of particles in magmas cannot be modeled by assuming a monodisperse population of particles. We propose a new model that uses interpolated parameters based on the relative proportions of small and large particles and produces a considerably improved fit to the data than earlier models. In a second series of experiments we investigate the textures produced by shearing bimodal suspensions in gradually solidifying epoxy resin in a concentric cylinder setup. The resulting textures show the prolate particles are aligned with the flow lines and spherical particles are found in well‐organized strings, with sphere‐depleted shear bands in high‐shear regions. These observations may explain the measured variation in the shear thinning and yield stress behavior with increasing solid fraction and particle aspect ratio. The implications for magma flow are discussed, and rheological results and tex- tural observations are compared with observations on natural samples.
Resumo:
It has been suggested that sources of P could be used to remediate metal-contaminated soil. The toxicity of four potential P sources, potassium hydrogen phosphate (PHP), triple superphosphate (TSP), rock phosphate (RP) and raw bone meal (RBM) to Eisenia fetida was determined. The concentration of P that is statistically likely to kill 50% of the population (LC50) for PHP, TSP and RBM was determined in OECD acute toxicity tests. 14 day LC50s expressed as bulk P concentration lay in the range 3319–4272 mg kg−1 for PHP, 3107–3590 mg kg−1 for TSP and 1782–2196 mg kg−1 for RBM (ranges present the 95% confidence intervals). For PHP and TSP mortality was significantly impacted by the electrical conductivity of the treated soils. No consistent relationship existed between mortality and electrical conductivity, soil pH and available (Olsen) P across the PHP, TSP and RBM amendment types. In RP toxicity tests mortality was low and it was not possible to determine a LC50 value. Incineration of bone meal at temperatures between 200 and 300 ◦C, pre-washing the bone meal, co-amendment with 5% green waste compost and delaying introduction of earthworms after bone meal amendments by 21 days or more led to significant reductions in the bone meal toxicity. These results are consistent with the toxicity being associated with the release and/or degradation of a soluble organic component present in raw bone meal. Bone meal can be used as an earthworm-friendly remedial amendment in metal-contaminated soils but initial additions may have a negative effect on any earthworms surviving in the contaminated soil before the organic component in the bone meal degrades in the soil.
Resumo:
DNA-strand exchange is a vital step in the recombination process, of which a key intermediate is the four-way DNA Holliday junction formed transiently in most living organisms. Here, the single-crystal structure at a resolution of 2.35 Å of such a DNA junction formed by d(CCGGTACCGG)2, which has crystallized in a more highly symmetrical packing mode to that previously observed for the same sequence, is presented. In this case, the structure is isomorphous to the mismatch sequence d(CCGGGACCGG)2, which reveals the roles of both lattice and DNA sequence in determining the junction geometry. The helices cross at the larger angle of 43.0° (the previously observed angle for this sequence was 41.4°) as a right-handed X. No metal cations were observed; the crystals were grown in the presence of only group I counter-cations.