995 resultados para spectral image
Resumo:
Purpose: To evaluate the reproducibility of Cirrus-SD OCT measurements and to compare central macular thickness (CMT) measurements between TD-Stratus and SD-Cirrus OCT in patients with active exudative AMD. Methods: Consecutive case series of patients with active exudative AMD seen in the Medical Retina Department. Patients underwent 1 scan with Stratus (macular thickness map protocol) and 5 scans with Cirrus (Macular Cube protocol) at the same visit by the same experienced examiner. To be included, patients best-corrected visual acuity (BCVA) had to be >20/200 while all scans had to be of sufficient quality, well-centered and at least one Cirrus scan with CMT >300 microns. The repeatability of the SD Cirrus was estimated by using all 5 CMT measurements and the mean of the Cirrus measurements was compared with the CMT obtained by TD Stratus. Results: Cirrus OCT demonstrated high intraobserver repeatability at the central foveal region (ICC 96%). The mean of the CMT measurements was 321microns for Stratus and 387 microns for Cirrus. The average difference was 65m (SD=30). The coefficient of concordance between Stratus and Cirrus CMT measurements was rho=0,749 with a high precision and a moderate accuracy. The equation of the line of regression between Stratus and meanCirrus is given by the following: M_stratus = 0,848 x m_cirrus - 4,496 (1).Conclusions: The Cirrus macular cube protocol allows reproducible CMT measurements in patients with active exudative AMD. In cases of upgrading from TD to SD use and vice versa, there is the possibility to predict the measurements by using the equation (1). These real life data and conclusions can help in improving our clinical management of patients with neovascular AMD.
Resumo:
The aim of the present study is to determine the level of correlation between the 3-dimensional (3D) characteristics of trabecular bone microarchitecture, as evaluated using microcomputed tomography (μCT) reconstruction, and trabecular bone score (TBS), as evaluated using 2D projection images directly derived from 3D μCT reconstruction (TBSμCT). Moreover, we have evaluated the effects of image degradation (resolution and noise) and X-ray energy of projection on these correlations. Thirty human cadaveric vertebrae were acquired on a microscanner at an isotropic resolution of 93μm. The 3D microarchitecture parameters were obtained using MicroView (GE Healthcare, Wauwatosa, MI). The 2D projections of these 3D models were generated using the Beer-Lambert law at different X-ray energies. Degradation of image resolution was simulated (from 93 to 1488μm). Relationships between 3D microarchitecture parameters and TBSμCT at different resolutions were evaluated using linear regression analysis. Significant correlations were observed between TBSμCT and 3D microarchitecture parameters, regardless of the resolution. Correlations were detected that were strongly to intermediately positive for connectivity density (0.711≤r(2)≤0.752) and trabecular number (0.584≤r(2)≤0.648) and negative for trabecular space (-0.407 ≤r(2)≤-0.491), up to a pixel size of 1023μm. In addition, TBSμCT values were strongly correlated between each other (0.77≤r(2)≤0.96). Study results show that the correlations between TBSμCT at 93μm and 3D microarchitecture parameters are weakly impacted by the degradation of image resolution and the presence of noise.
Resumo:
We study the impact of sampling theorems on the fidelity of sparse image reconstruction on the sphere. We discuss how a reduction in the number of samples required to represent all information content of a band-limited signal acts to improve the fidelity of sparse image reconstruction, through both the dimensionality and sparsity of signals. To demonstrate this result, we consider a simple inpainting problem on the sphere and consider images sparse in the magnitude of their gradient. We develop a framework for total variation inpainting on the sphere, including fast methods to render the inpainting problem computationally feasible at high resolution. Recently a new sampling theorem on the sphere was developed, reducing the required number of samples by a factor of two for equiangular sampling schemes. Through numerical simulations, we verify the enhanced fidelity of sparse image reconstruction due to the more efficient sampling of the sphere provided by the new sampling theorem.
Resumo:
In this paper, we consider active sampling to label pixels grouped with hierarchical clustering. The objective of the method is to match the data relationships discovered by the clustering algorithm with the user's desired class semantics. The first is represented as a complete tree to be pruned and the second is iteratively provided by the user. The active learning algorithm proposed searches the pruning of the tree that best matches the labels of the sampled points. By choosing the part of the tree to sample from according to current pruning's uncertainty, sampling is focused on most uncertain clusters. This way, large clusters for which the class membership is already fixed are no longer queried and sampling is focused on division of clusters showing mixed labels. The model is tested on a VHR image in a multiclass classification setting. The method clearly outperforms random sampling in a transductive setting, but cannot generalize to unseen data, since it aims at optimizing the classification of a given cluster structure.
Resumo:
The topic of this thesis is studying how lesions in retina caused by diabetic retinopathy can be detected from color fundus images by using machine vision methods. Methods for equalizing uneven illumination in fundus images, detecting regions of poor image quality due toinadequate illumination, and recognizing abnormal lesions were developed duringthe work. The developed methods exploit mainly the color information and simpleshape features to detect lesions. In addition, a graphical tool for collecting lesion data was developed. The tool was used by an ophthalmologist who marked lesions in the images to help method development and evaluation. The tool is a general purpose one, and thus it is possible to reuse the tool in similar projects.The developed methods were tested with a separate test set of 128 color fundus images. From test results it was calculated how accurately methods classify abnormal funduses as abnormal (sensitivity) and healthy funduses as normal (specificity). The sensitivity values were 92% for hemorrhages, 73% for red small dots (microaneurysms and small hemorrhages), and 77% for exudates (hard and soft exudates). The specificity values were 75% for hemorrhages, 70% for red small dots, and 50% for exudates. Thus, the developed methods detected hemorrhages accurately and microaneurysms and exudates moderately.
Resumo:
PURPOSE: To report the time course of retinal morphologic changes in a patient with acute retinal pigment epithelitis (ARPE) using spectral domain optical coherence tomography (SD-OCT). METHODS: A 30-year old man was referred for blurred vision of his right eye after five days that appeared suddenly 15 days after recovery from a flu-like syndrome. SD-OCT was performed immediately, followed by fluorescein and infracyanine angiography at eight days and then at three weeks. RESULTS: At presentation, a bubble of sub-macular deposit was observed on the right macula with central golden micronodules in a honeycomb pattern. SD-OCT showed an "anterior dislocation" of all the retinal layers up to the inner/outer segment (IS/OS) line and irregular deposits at the OS level together with thickening of the retinal pigment epithelial (RPE) layer. As visual acuity increased, eight days later, the OCT showed reduction of the sub-retinal deposits and an abnormal hyperflectivity of the sub-retinal and RPE layers was observed. The patient showed a positive serology for picornavirus. DISCUSSION: The acute SD-OCT sections of this patient with ARPE were compared with histological sections of a 35 day old Royal College of Surgeons rat. Similar findings could be observed, with preservation of the IS/OS line and accumulation of debris at the OS level, suggesting that ARPE symptoms could result from a transient phagocytic dysfunction of the RPE at the fovea, inducing reversible accumulation of undigested OS. Picornaviruses comprising enterovirus and coxsachievirus described as being associated with acute chorioretinitis. In this case, it was responsible for ARPE. CONCLUSION: We hypothesize that ARPE syndrome results from a transient dysfunction of RPE, which can occur as a post viral reaction.
Resumo:
This paper presents the evaluation results of the methods submitted to Challenge US: Biometric Measurements from Fetal Ultrasound Images, a segmentation challenge held at the IEEE International Symposium on Biomedical Imaging 2012. The challenge was set to compare and evaluate current fetal ultrasound image segmentation methods. It consisted of automatically segmenting fetal anatomical structures to measure standard obstetric biometric parameters, from 2D fetal ultrasound images taken on fetuses at different gestational ages (21 weeks, 28 weeks, and 33 weeks) and with varying image quality to reflect data encountered in real clinical environments. Four independent sub-challenges were proposed, according to the objects of interest measured in clinical practice: abdomen, head, femur, and whole fetus. Five teams participated in the head sub-challenge and two teams in the femur sub-challenge, including one team who tackled both. Nobody attempted the abdomen and whole fetus sub-challenges. The challenge goals were two-fold and the participants were asked to submit the segmentation results as well as the measurements derived from the segmented objects. Extensive quantitative (region-based, distance-based, and Bland-Altman measurements) and qualitative evaluation was performed to compare the results from a representative selection of current methods submitted to the challenge. Several experts (three for the head sub-challenge and two for the femur sub-challenge), with different degrees of expertise, manually delineated the objects of interest to define the ground truth used within the evaluation framework. For the head sub-challenge, several groups produced results that could be potentially used in clinical settings, with comparable performance to manual delineations. The femur sub-challenge had inferior performance to the head sub-challenge due to the fact that it is a harder segmentation problem and that the techniques presented relied more on the femur's appearance.
Resumo:
This paper presents a novel image classification scheme for benthic coral reef images that can be applied to both single image and composite mosaic datasets. The proposed method can be configured to the characteristics (e.g., the size of the dataset, number of classes, resolution of the samples, color information availability, class types, etc.) of individual datasets. The proposed method uses completed local binary pattern (CLBP), grey level co-occurrence matrix (GLCM), Gabor filter response, and opponent angle and hue channel color histograms as feature descriptors. For classification, either k-nearest neighbor (KNN), neural network (NN), support vector machine (SVM) or probability density weighted mean distance (PDWMD) is used. The combination of features and classifiers that attains the best results is presented together with the guidelines for selection. The accuracy and efficiency of our proposed method are compared with other state-of-the-art techniques using three benthic and three texture datasets. The proposed method achieves the highest overall classification accuracy of any of the tested methods and has moderate execution time. Finally, the proposed classification scheme is applied to a large-scale image mosaic of the Red Sea to create a completely classified thematic map of the reef benthos
Resumo:
Differential X-ray phase-contrast tomography (DPCT) refers to a class of promising methods for reconstructing the X-ray refractive index distribution of materials that present weak X-ray absorption contrast. The tomographic projection data in DPCT, from which an estimate of the refractive index distribution is reconstructed, correspond to one-dimensional (1D) derivatives of the two-dimensional (2D) Radon transform of the refractive index distribution. There is an important need for the development of iterative image reconstruction methods for DPCT that can yield useful images from few-view projection data, thereby mitigating the long data-acquisition times and large radiation doses associated with use of analytic reconstruction methods. In this work, we analyze the numerical and statistical properties of two classes of discrete imaging models that form the basis for iterative image reconstruction in DPCT. We also investigate the use of one of the models with a modern image reconstruction algorithm for performing few-view image reconstruction of a tissue specimen.
Resumo:
Tämän tutkimuksen tavoitteena oli selvittää, vaikuttaako kansainvälisen opiskelijan kulttuuritausta opiskelijan odotetun ja koetun yliopistoimagon muodostumiseen. Jotta kulttuurin vaikutuksia yliopistoimagoon voitiin tutkia, tutkimuksessa tunnistettiin yliopistoimagon muodostumiseen oleellisesti vaikuttavat tekijät. Kulttuurin roolia organisaation imagon muodostumisessa ei ole tutkittu aiemmissa tieteellisissä julkaisuissa. Näin ollen tämän tutkimuksen voidaan katsoa edistäneen nykyistä imagotutkimusta. Tutkimuksen kohdeyliopistona oli Lappeenrannan teknillinen yliopisto (LTY). Tutkimuksen empiirinen osa toteutettiin kvantitatiivisena Internet - pohjaisena kyselytutkimuksena tilastollisen analyysin menetelmin. Otos (N=179) koostui kaikista Lappeenrannan teknillisessä yliopistossa lukuvuonna 2005-2006 opiskelleista kansainvälisistä opiskelijoista. Kyselyyn vastasi 68,7 % opiskelijoista. Johtopäätöksenä voidaan todeta, että kulttuurilla ei ole merkittävää vaikutusta yliopistoimagon muodostumiseen. Tutkimuksessa saatiin selville, että yliopiston Internet-sivujen laatu vaikuttaa positiivisesti odotetun yliopistoimagon muodostumiseen, kun taas koettuun yliopistoimagoon vaikuttavat positiivisesti odotettu yliopistoimago, pedagoginen laatu sekä opetusympäristö. Markkinoinnin näkökulmasta tulokset voidaan vetää yhteen toteamalla, että yliopistojen ei tarvitsisi räätälöidä tutkimuksessa tunnistettuja imagoon vaikuttavia tekijöitä eri kulttuureistatulevia opiskelijoita varten.
Resumo:
The problem of selecting anappropriate wavelet filter is always present in signal compression based on thewavelet transform. In this report, we propose a method to select a wavelet filter from a predefined set of filters for the compression of spectra from a multispectral image. The wavelet filter selection is based on the Learning Vector Quantization (LVQ). In the training phase for the test images, the best wavelet filter for each spectrum has been found by a careful compression-decompression evaluation. Certain spectral features are used in characterizing the pixel spectra. The LVQ is used to form the best wavelet filter class for different types of spectra from multispectral images. When a new image is to be compressed, a set of spectra from that image is selected, the spectra are classified by the trained LVQand the filter associated to the largest class is selected for the compression of every spectrum from the multispectral image. The results show, that almost inevery case our method finds the most suitable wavelet filter from the pre-defined set for the compression.
Resumo:
Technological progress has made a huge amount of data available at increasing spatial and spectral resolutions. Therefore, the compression of hyperspectral data is an area of active research. In somefields, the original quality of a hyperspectral image cannot be compromised andin these cases, lossless compression is mandatory. The main goal of this thesisis to provide improved methods for the lossless compression of hyperspectral images. Both prediction- and transform-based methods are studied. Two kinds of prediction based methods are being studied. In the first method the spectra of a hyperspectral image are first clustered and and an optimized linear predictor is calculated for each cluster. In the second prediction method linear prediction coefficients are not fixed but are recalculated for each pixel. A parallel implementation of the above-mentioned linear prediction method is also presented. Also,two transform-based methods are being presented. Vector Quantization (VQ) was used together with a new coding of the residual image. In addition we have developed a new back end for a compression method utilizing Principal Component Analysis (PCA) and Integer Wavelet Transform (IWT). The performance of the compressionmethods are compared to that of other compression methods. The results show that the proposed linear prediction methods outperform the previous methods. In addition, a novel fast exact nearest-neighbor search method is developed. The search method is used to speed up the Linde-Buzo-Gray (LBG) clustering method.