921 resultados para small pelagic fish


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strontium and neodymium isotopic data are reported for barite samples chemically separated from Late Miocene to Pliocene sediments from the eastern equatorial Pacific. At a site within a region of very high productivity close to the equator, 87Sr/86Sr ratios in the barite separates are indistinguishable from those of foraminifera and fish teeth from the same samples. However, at two sites north of the productivity maximum barite separates have slightly, but consistently lower (averaging 0.000062) ratios than the coexisting phases, although values still fall within the total range of published values for the contemporaneous seawater strontium isotope curve. We examine possible causes for this offset including recrystallization of the foraminifera, fish teeth or barite, the presence of non-barite contaminants, or incorporation of older, reworked deep-sea barite; the inclusion of a small amount of hydrothermal barite in the sediments seems most consistent with our data, although there are difficulties associated with adequate production and transportation of this phase. Barite is unlikely to replace calcite as a preferred tracer of seawater strontium isotopes in carbonate-rich sediments, but may prove a useful substitute in cases where calcite is rare or strongly affected by diagenesis. In contrast to the case for strontium, neodymium isotopic ratios in the barite separates are far from expected values for contemporary seawater, and appear to be dominated by an (unobserved) eolian component with high neodymium concentration and low 143Nd/144Nd. These results suggest that the true potential of barite as an indicator of paleocean neodymium isotopic ratios and REE patterns will be realized only when a more selective separation procedure is developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lithologic, grain size, chemical and mineral compositions of recent bottom sediments from the South Pacific are reported in the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seasonality in biomagnification of persistent organic pollutants (POPs; polychlorinated biphenyls, chlorinated pesticides, and brominated flame retardants) in Arctic marine pelagic food webs was investigated in Kongsfjorden, Svalbard, Norway. Trophic magnification factors (TMFs; average factor change in concentration between two trophic levels) were used to measure food web biomagnification in biota in May, July, and October 2007. Pelagic zooplankton (seven species), fish (five species), and seabirds (two species) were included in the study. For most POP compounds, highest TMFs were found in July and lowest were in May. Seasonally changing TMFs were a result of seasonally changing POP concentrations and the d15N-derived trophic positions of the species included in the food web. These seasonal differences in TMFs were independent of inclusion/exclusion of organisms based on physiology (i.e., warm- versus cold-blooded organisms) in the food web. The higher TMFs in July, when the food web consisted of a higher degree of boreal species, suggest that future warming of the Arctic and increased invasion by boreal species can result in increased food web magnification. Knowledge of the seasonal variation in POP biomagnification is a prerequisite for understanding changes in POP biomagnification caused by climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Siliceous deposits drilled on Ocean Drilling Program Leg 129 accumulated within a few degrees of the equator during the Jurassic through early Tertiary, as constrained by paleomagnetic data. During the Jurassic and Early Cretaceous, radiolarian ooze, mixed with a minor amount of pelagic clay, was deposited near the equator, and overall accumulation rates were moderate to low. At a smaller scale, in more detail, periods of relatively higher accumulation rates alternated with periods of very low accumulation rates. Higher rates are represented by radiolarite and limestone; lower rates are represented by radiolarian claystone. Our limited data from Leg 129 suggests that accumulation of biogenic deposits was not symmetrical about the equator or consistent over time. In the Jurassic, sedimentation was siliceous; in the Cretaceous there was significant calcareous deposition; in the Tertiary claystone indicates significantly lower accumulation rates at least the northern part of the equatorial zone. Accumulation rates for Leg 129 deposits in the Cretaceous were higher in the southern part of the equatorial zone than in the northern part, and the southern side of this high productivity zone extended to approximately 15°S, while the northern side extended only to about 5°N. Accumulation rates are influenced by relative contributions from various sediment sources. Several elements and element ratios are useful for discriminating sedimentary sources for the equatorial depositional environments. Silica partitioning calculations indicate that silica is dominantly of biogenic origin, with a detrital component in the volcaniclastic turbidite units, and a small hydrothermal component in the basal sediments on spreading ridge basement of Jurassic age at Site 801. Iron in Leg 129 sediments is dominantly of detrital origin, highest in the volcaniclastic units, with a minor hydrothermal component in the basal sediments at Site 801. Manganese concentrations are highest in the units with the lowest accumulation rates. Fe/Mn ratios are >3 in all units, indicating negligible hydrothermal influence. Magnesium and aluminum concentrations are highest in the volcaniclastic units and in the basal sediments at Site 801. Phosphorous is very low in abundance and may be detrital, derived from fish parts. Boron is virtually absent, as is typical of deep-water deposits. Rare earth element concentrations are slightly higher in the volcaniclastic deposits, suggesting a detrital source, and lower in the rest of the lithologic units. Rare earth element abundances are also low relative to "average shale." Rare earth element patterns indicate all samples are light rare earth element enriched. Siliceous deposits in the volcaniclastic units have patterns which lack a cerium anomaly, suggesting some input of rare earth elements from a detrital source; most other units have a distinct negative Ce anomaly similar to seawater, suggesting a seawater source, through adsorption either onto biogenic tests or incorporation into authigenic minerals for Ce in these units. The Al/(Al + Fe + Mn) ratio indicates that there is some detrital component in all the units sampled. This ratio plotted against Fe/Ti shows that all samples plot near the detrital and basalt end-members, except for the basal samples from Site 801, which show a clear trend toward the hydrothermal end-member. The results of these plots and the association of high Fe with high Mg and Al indicate the detrital component is dominantly volcaniclastic, but the presence of potassium in some samples suggests some terrigenous material may also be present, most likely in the form of eolian clay. On Al-Fe-Mn ternary plots, samples from all three sites show a trend from biogenic ooze at the top of the section downhole to oceanic basalt. On Si-Fe-Mn ternary plots, the samples from all three sites fall on a trend between equatorial mid-ocean spreading ridges and north Pacific red clay. Copper-barium ratios show units that have low accumulation rates plot in the authigenic field, and radiolarite and limestone samples that have high accumulation rates fall in the biogenic field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We estimated the relative contribution of atmospheric Nitrogen (N) input (wet and dry deposition and N fixation) to the epipelagic food web by measuring N isotopes of different functional groups of epipelagic zooplankton along 23°W (17°N-4°S) and 18°N (20-24°W) in the Eastern Tropical Atlantic. Results were related to water column observations of nutrient distribution and vertical diffusive flux as well as colony abundance of Trichodesmium obtained with an Underwater Vision Profiler (UVP5). The thickness and depth of the nitracline and phosphocline proved to be significant predictors of zooplankton stable N isotope values. Atmospheric N input was highest (61% of total N) in the strongly stratified and oligotrophic region between 3 and 7°N, which featured very high depth-integrated Trichodesmium abundance (up to 9.4×104 colonies m-2), strong thermohaline stratification and low zooplankton delta15N (~2 per mil). Relative atmospheric N input was lowest south of the equatorial upwelling between 3 and 5°S (27%). Values in the Guinea Dome region and north of Cape Verde ranged between 45 and 50%, respectively. The microstructure-derived estimate of the vertical diffusive N flux in the equatorial region was about one order of magnitude higher than in any other area (approximately 8 mmol m-2 d 1). At the same time, this region received considerable atmospheric N input (35% of total). In general, zooplankton delta15N and Trichodesmium abundance were closely correlated, indicating that N fixation is the major source of atmospheric N input. Although Trichodesmium is not the only N fixing organism, its abundance can be used with high confidence to estimate the relative atmospheric N input in the tropical Atlantic (r2 = 0.95). Estimates of absolute N fixation rates are two- to tenfold higher than incubation-derived rates reported for the same regions. Our approach integrates over large spatial and temporal scales and also quantifies fixed N released as dissolved inorganic and organic N. In a global analysis, it may thus help to close the gap in oceanic N budgets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of CO2-induced seawater acidification on plankton communities were also addressed in a series of 3 mesocosm experiments, called the Pelagic Ecosystem CO2 Enrichment (PeECE I-III) studies, which were conducted in the Large-Scale Mesocosm Facilities of the University of Bergen, Norway in 2001, 2003 and 2005, respectively. Each experiment consisted of 9 mesocosms, in which CO2 was manipulated to initial concentrations of 190, 350 and 750 µatm in 2001 and 2003, and 350, 700 and 1050 µatm in 2005. The present dataset concerns PeECE III.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquaponics is the science of integrating intensive fish aquaculture with plant production in recirculating water systems. Although ion waste production by fish cannot satisfy all plant requirements, less is known about the relationship between total feed provided for fish and the production of milliequivalents (mEq) of different macronutrients for plants, especially for nutrient flow hydroponics used for strawberry production in Spain. That knowledge is essential to consider the amount of macronutrients available in aquaculture systems so that farmers can estimate how much nutrient needs to be supplemented in the waste water from fish, to produce viable plant growth. In the present experiment, tilapia (Oreochromis niloticus L.) were grown in a small-scale recirculating system at two different densities while growth and feed consumption were noted every week for five weeks. At the same time points, water samples were taken to measure pH, EC25, HCO3 – , Cl – , NH4 + , NO2 – , NO3 – , H2PO4 – , SO4 2– , Na + , K+ , Ca 2+ and Mg 2+ build up. The total increase in mEq of each ion per kg of feed provided to the fish was highest for NO3 - , followed, in decreasing order, by Ca 2+ , H2PO4 – , K+ , Mg 2+ and SO4 2– . The total amount of feed required per mEq ranged from 1.61- 13.1 kg for the four most abundant ions (NO3 – , Ca 2+ , H2PO4 – and K+ ) at a density of 2 kg fish m–3 , suggesting that it would be rather easy to maintain small populations of fish to reduce the cost of hydroponic solution supplementation for strawberries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fish and mammal bones from the coastal site of Cerro Azul, Peru shed light on economic specialization just before the Inca conquest of A.D. 1470. The site devoted itself to procuring anchovies and sardines in quantity for shipment to agricultural communities. These small fish were dried, stored, and eventually transported inland via caravans of pack llamas. Cerro Azul itself did not raise llamas but obtained charqui (or dried meat) as well as occasional whole adult animals from the caravans. Guinea pigs were locally raised. Some 20 species of larger fish were caught by using nets; the more prestigious varieties of these show up mainly in residential compounds occupied by elite families.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Document addressed to Thomas Hicks (attorney for the defendant) informing him that Scott (attorney for the plaintiff) intends to bring the case to trial "at the next Supreme Court of Judicature to be held for the Province of New York." Signed by Scott.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While the history of taxonomic diversification in open ocean lineages of ray-finned fish and elasmobranchs is increasingly known, the evolution of their roles within the open ocean ecosystem remains poorly understood. To assess the relative importance of these groups through time, we measured the accumulation rate of microfossil fish teeth and elasmobranch dermal denticles (ichthyoliths) in deep sea sediment cores from the North and South Pacific gyres over the past 85 million years. We find three distinct and stable open ocean ecosystem structures, each defined by the relative and absolute abundance of elasmobranch and ray-finned fish remains. The Cretaceous Ocean (pre-66 Ma), was characterized by abundant elasmobranch denticles, but low abundances of fish teeth. The Paleogene Ocean (66-20 Ma), initiated by the Cretaceous/Paleogene Mass Extinction, had nearly 4 times the abundance of fish teeth compared to elasmobranch denticles. This Paleogene Ocean structure remained stable during the Eocene greenhouse (50 Ma) and the Eocene-Oligocene glaciation (34 Ma), despite large changes in overall accumulation of both groups during those intervals, suggesting that climate change is not a primary driver of ecosystem structure. Dermal denticles virtually disappeared from open ocean ichthyolith assemblages about 20 Ma, while fish tooth accumulation increased dramatically in variability, marking the beginning of the Modern Ocean. Together, these results suggest that open ocean fish community structure is stable on long timescales, independent of total production and climate change. The timing of the abrupt transitions between these states suggests that the transitions may be due to interactions with other, non-preserved pelagic consumer groups.