987 resultados para single event upset
Resumo:
Econometric analysis has been inconclusive in determining the contribution that increased skills have on macroeconomic performance whilst conventional growth accounting approaches to the same problem rest on restrictive assumptions. We propose an alternative micro-to-macro method which combines elements of growth accounting and numerical general equilibrium modelling. The usefulness of this approach for applied education policy analysis is demonstrated by evaluating the macroeconomic impact on the Scottish economy of a single graduation cohort from further education colleges. We find the macroeconomic impact to be significant. From a policy point of view this supports a revival of interest in the conventional teaching role of education institutions.
Resumo:
Abstract Long term contact with pathogens induces an adaptive immune response, which is mainly mediated by T and B cells. Antigen-induced activation of T and B cells is an important event, since it facilitates the transition of harmless, low proliferative lymphocytes into powerful and fast expanding cells, which can, if deregulated, be extremely harmful and dangerous for the human body. One of the most important events during lymphocyte activation is the induction of NF-xB activity, a transcription factor that controls not only cytokine secretion, but also lymphocyte proliferation and survival. Recent discoveries identified the CBM complex as the central regulator of NF-xB activity in lymphocytes. The CBM complex consists of the three proteins Carma1, Bcl10 and Malt1, in which Carma1 serves as recruitment platform of the complex and Bcl10 as an adaptor to recruit Malt1 to this platform. But exactly how Malt1 activates NF-x6 is still poorly understood. We discovered that Malt1 is a protease, which cleaves its interaction partner Bcl10 upon T and B cell stimulation. We mapped the Bcl10 cleavage site by single point mutations as well as by a proteomics approach, and used this knowledge to design a fluorogenic Malt1 reporter peptide. With this tool were we able to the first time demonstrate proteolytic activity of Malt1 in vitro, using recombinant Malt1, and in stimulated T cells. Based on similarities to a metacaspase, we designed a Malt1inhibitor, which allowed unto investigate the role of Malt1 activity in T cells. Malt1-inhibited T cells showed a clear defect in NF-xB activity, resulting in impaired IL-2 cytokine secretion levels. We also found a new unexpected role for Bcl10; the blockade of Bcl10 cleavage resulted in a strongly impaired capability of stimulated T cells to adhere to the extracellular matrix protein fibronectin. Because of the central position of the C8M complex, it is not surprising that different lymphomas show abnormal expressions of Carma1, Bcl10 and Malt1. We investigated the role of Malt1 proteolytic activity in the most aggressive subtype of diffuse large B cell lymphomas called ABC, which was described to depend on the expression of Carmal, and frequently carries oncogenic Carmal mutations. We found constitutive high Malt1 activity in all tested ABC cell lines visualized by detection of cleavage products of Malt1 substrates. With the use of the Malt1-inhibitor, we could demonstrate that Malt-inhibition in those cells had two effects. First, the tumor cell proliferation was decreased, most likely because of lower autocrine stimulation by cytokines. Second, we could sensitize the ABC cells towards cell death, which is most likely caused by reduced expression of prosurvival NF-xB target gens. Taken together, we identified Malt1 as a protease in T and B cells, demonstrated its importance for NF-xB signaling and its deregulation in a subtype of diffuse large B cell lymphoma. This could allow the development of a new generation of immunomodulatory and anti-cancer drugs. Résumé Un contact prolongé avec des pathogènes provoque une réponse immunitaire adaptative qui dépend principalement des cellules T et 8. L'activation des lymphocytes T et B, suite à la reconnaissance d'un antigène, est un événement important puisqu'il facilite la transition pour ces cellules d'un état de prolifération limitée et inoffensive à une prolifération soutenue et rapide. Lorsque ce mécanisme est déréglé ìl peut devenir extrêmement nuisible et dangereux pour le corps humain. Un des événement les plus importants lors de l'activation des lymphocytes est l'induction du facteur de transcription NFxB, qui organise la sécrétion de cytokines ainsi que la prolifération et la survie des lymphocytes. Le complexe CBM, composé des trois protéines Carmai, Bc110 et Malt1, a été récemment identifié comme un régulateur central de l'activité de NF-x8 dans les lymphocytes. Carma1 sert de plateforme de recrutement pour ce complexe alors que Bc110 permet d'amener Malt1 dans cette plateforme. Cependant, le rôle exact de Malt1 dans l'activation de NF-tcB reste encore mal compris. Nous avons découvert que Malt1 est une protéase qui clive son partenaire d'interaction BcI10 après stimulation des cellules T et B. Nous avons identifié le site de clivage de BcI10 par une série de mutations ponctuelles ainsi que par une approche protéomique, ce qui nous a permis de fabriquer un peptide reporteur fluorogénique pour mesurer l'activité de Malt1. Grâce à cet outil, nous avons démontré pour la première fois l'activité protéolytique de Malt1 in vitro à l'aide de protéines Malt1 recombinantes ainsi que dans des cellules T stimulées. La ressemblance de Malt1 avec une métacaspase nous a permis de synthétiser un inhibiteur de Malt1 et d'étudier ainsi le rôle de l'activité de Malt1 dans les cellules T. L'inhibition de Malt1 dans les cellules T a révélé un net défaut de l'activité de NF-x8, ayant pour effet une sécrétion réduite de la cytokine IL-2. Nous avons également découvert un rôle inattendu pour Bcl10: en effet, bloquer le clivage de Bcl10 diminue fortement la capacité d'adhésion des cellules T stimulées à la protéine fïbronectine, un composant de la matrice extracellulaire. En raison de la position centrale du complexe CBM, il n'est pas étonnant que le niveau d'expression de Carmai, Bcl10 et Malt1 soit anormal dans plusieurs types de lymphomes. Nous avons examiné le rôle de l'activité protéolytique de Malt1 dans le sous-type le plus agressif des lymphomes B diffus à grandes cellules, appelé sous-type ABC. Ce sous-type de lymphomes dépend de l'expression de Carmai et présente souvent des mutations oncogéniques de Carma1. Nous avons démontré que l'activité de Malt1 était constitutivement élevée dans toutes les lignées cellulaires de type ABC testées, en mettant en évidence la présence de produits de clivage de différents substrats de Malt1. Enfin, l'utilisation de l'inhibiteur de Malt1 nous a permis de démontrer que l'inhibition de Malt1 avait deux effets. Premièrement, une diminution de la prolifération des cellules tumorales, probablement dûe à leur stimulation autocrine par des cytokines fortement réduite. Deuxièmement, une sensibilisation des cellules de type ABC à ia mort cellulaire, vraisemblablement causée par l'expression diminuée de gènes de survie dépendants de NF-tcB. En résumé, nous avons identifié Malt1 comme une protéase dans les cellules T et B, nous avons mis en évidence son importance pour l'activation de NF-xB ainsi que les conséquences du dérèglement de l'activité de Malt1 dans un sous-type de lymphome B diffus à larges cellules. Notre étude ouvre ainsi la voie au développement d'une nouvelle génération de médicaments immunomodulateurs et anti-cancéreux.
Resumo:
Helicobacter-induced gastritis is considered nowadays an epidemic, the prevalence of which is one of the highest world-wide (70%), with as much as 40% of the population in industrialized countries. Helicobacter pylori (H. pylori) antigens (Ag) capable to elicit a protective immune response in animal models have been identified, but these antigens have not been shown to be strongly immunogenic when administered to humans. Due to their stability in the gastric environment and avidity, passive administration of secretory immunoglobulin A (SIgA) antibodies (Ab) targeting protective Ag might be particularly relevant as a substitute or complement to current therapies. To this aim, we have designed expression vectors to convert a scFv polypeptide specific for H. pylori urease subunit A into human IgG, polymeric IgA (IgAp/d) and SIgA. Purified proteins show proper binding characteristics toward both the native and denatured forms of H. pylori urease. The direct comparison between different isotype and molecular forms, but of unique specificity, demonstrates that SIgA and IgAp/d are more efficient in blocking free and H. pylori-associated urease than IgG and scFv. We conclude that the expression system reported herein will represent a valuable tool to produce human SIgA Ab of multiple specificities against H. pylori antigens involved in colonization and persistence.
Resumo:
Very little is known about early molecular events triggering epithelial cell differentiation. We have examined the possible role of tyrosine phosphorylation in this process, as observed in cultures of primary mouse keratinocytes after exposure to calcium or 12-O-tetradecanoylphorbol-13-acetate (TPA). Immunoblotting with phosphotyrosine-specific antibodies as well as direct phosphoamino acid analysis revealed that induction of tyrosine phosphorylation occurs as a very early and specific event in keratinocyte differentiation. Very little or no induction of tyrosine phosphorylation was observed in a keratinocyte cell line resistant to the differentiating effects of calcium. Treatment of cells with tyrosine kinase inhibitors prevented induction of tyrosine phosphorylation by calcium and TPA and interfered with the differentiative effects of these agents. These results suggest that specific activation of tyrosine kinase(s) may play an important regulatory role in keratinocyte differentiation.
Resumo:
BACKGROUND: Among patients with steroid-refractory ulcerative colitis (UC) in whom a first rescue therapy has failed, a second line salvage treatment can be considered to avoid colectomy. AIM: To evaluate the efficacy and safety of second or third line rescue therapy over a one-year period. METHODS: Response to single or sequential rescue treatments with infliximab (5mg/kg intravenously (iv) at week 0, 2, 6 and then every 8weeks), ciclosporin (iv 2mg/kg/daily and then oral 5mg/kg/daily) or tacrolimus (0.05mg/kg divided in 2 doses) in steroid-refractory moderate to severe UC patients from 7 Swiss and 1 Serbian tertiary IBD centers was retrospectively studied. The primary endpoint was the one year colectomy rate. RESULTS: 60% of patients responded to the first rescue therapy, 10% went to colectomy and 30% non-responders were switched to a 2(nd) line rescue treatment. 66% of patients responded to the 2(nd) line treatment whereas 34% failed, of which 15% went to colectomy and 19% received a 3(rd) line rescue treatment. Among those, 50% patients went to colectomy. Overall colectomy rate of the whole cohort was 18%. Steroid-free remission rate was 39%. The adverse event rates were 33%, 37.5% and 30% for the first, second and third line treatment respectively. CONCLUSION: Our data show that medical intervention even with 2(nd) and 3(rd) rescue treatments decreased colectomy frequency within one year of follow up. A longer follow-up will be necessary to investigate whether sequential therapy will only postpone colectomy and what percentage of patients will remain in long-term remission.
Resumo:
AIM: To assesse the rate of bile duct injuries (BDI) and overall biliary complications during single-port laparoscopic cholecystectomy (SPLC) compared to conventional laparoscopic cholecystectomy (CLC). METHODS: SPLC has recently been proposed as an innovative surgical approach for gallbladder surgery. So far, its safety with respect to bile duct injuries has not been specifically evaluated. A systematic review of the literature published between January 1990 and November 2012 was performed. Randomized controlled trials (RCT) comparing SPLC versus CLC reporting BDI rate and overall biliary complications were included. The quality of RCT was assessed using the Jadad score. Analysis was made by performing a meta-analysis, using Review Manager 5.2. This study was based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. A retrospective study including all retrospective reports on SPLC was also performed alongside. RESULTS: From 496 publications, 11 RCT including 898 patients were selected for meta-analysis. No studies were rated as high quality (Jadad score ≥ 4). Operative indications included benign gallbladder disease operated in an elective setting in all studies, excluding all emergency cases and acute cholecystitis. The median follow-up was 1 mo (range 0.03-18 mo). The incidence of BDI was 0.4% for SPLC and 0% for CLC; the difference was not statistically different (P = 0.36). The incidence of overall biliary complication was 1.6% for SPLC and 0.5% for CLC, the difference did not reached statistically significance (P = 0.21, 95%CI: 0.66-15). Sixty non-randomized trials including 3599 patients were also analysed. The incidence of BDI reported then was 0.7%. CONCLUSION: The safety of SPLC cannot be assumed, based on the current evidence. Hence, this new technology cannot be recommended as standard technique for laparoscopic cholecystectomy.
Resumo:
SUMMARY Genomic imprinting is an epigenetic mechanism of transcriptional regulation that ensures restriction of expression of a subset of mammalian genes to a single parental allele. The best studied example of imprinted gene regulation is the Igf2/H19 locus, which is also the most commonly altered by loss of imprinting (LOT) in cancer. LOT is associated with numerous hereditary diseases and several childhood, and adult cancers. Differential expression of reciprocal H19 and 1gf2 alleles in somatic cells depends on the methylation status of the imprinting control region (ICR) which regulates binding of CTCF, an ubiquitously expressed 11-zinc finger protein that binds specifically to non-methylated maternal ICR and thereby attenuates expression of Igf2, while it does not bind to methylated paternal ICR, which enables Igf2 expression. Initial ICR methylation occurs during gametogenesis by an as yet unknown mechanism. The accepted hypothesis is that the event of differential maternal and paternal DNA methylation depends on germ-line specific proteins. Our Laboratory identified a novel 11-zinc-finger protein CTCF-T (also known as CTCFL and BORIS) that is uniquely expressed in the male germ-line and is highly homologous within its zinc-finger region with CTCF. The amino-acid sequences flanking the zinc-finger regions of CTCF and CTCF-T have widely diverged, suggesting that though they could bind to the same DNA targets (ICRs) they are likely to have different functions. Interestingly, expression of CTCF-T and CTCF is mutually exclusive; CTCF-T-positive (CTCF-negative) cells occur in the stage of spermatogenesis that coincides with epigenetic reprogramming, including de novo DNA methylation. In our study we demonstrate the role that CTCF-T plays in genomic imprinting. Here we show that CTCF-T binds in vivo to the ICRs of Igf2/H19 and Dlk/Gt12 imprinted genes. In addition, we identified two novel proteins interacting with CTCF-T: a protein arginine methyltransferase PRMT7 and an arginine-rich histone H2A variant that we named trH2A. These interactions were confirmed and show that the two proteins interact with the amino-teiminal region of CTCF-T. Additionally, we show interaction of the amino- terminal region of CTCF-T with histones H1, H2A and H3. These results suggest that CTCF-T is a sequence-specific DNA (ICR) binding protein that associates with histones and recruits PRMT7. Interestingly, PRMT7 has a histone-methyltransferase activity. It has been shown that histone methylation can mark chromatin regions thereby directing DNA-methylation; thus, our hypothesis is that the CTCF-T protein-scaffold directs PRMT7 to methylate histone(s) assembled on ICRs, which marks chromatin for the recruitment of the de novo DNA methyltransferases to methylate DNA. To test this hypothesis, we developed an in vivo DNA-methylation assay using Xenopus laevis' oocytes, where H19 ICR and different expression cDNAs, including CTCF-T, PRMT7 and the de novo DNA methyltransferases (Dnmt3a, Dnmt3b and Dnmt3L) are microinjected into the nucleus. The methylation status of CpGs within the H19 ICR was analysed 48 or 72 hours after injection. Here we demonstrate that CpGs in the ICR are methylated in the presence of both CTCF-T and PRMT7, while control oocytes injected only with ICR did not show any methylation. Additionally, we showed for the first time that Dnmt3L is crucial for the establishment of the imprinting marks on H19 ICR. Moreover, we confirmed that Dnmt3a and Dnmt3b activities are complementary. Our data indicate that all three Dnmt3s are important for efficient de novo DNA methylation. In conclusion, we propose a mechanism for the establishment of de novo imprinting marks during spermatogenesis: the CTCF-T/PRMT7 protein complex directs histone methylation leading to sequence-specific de novo DNA methylation of H19 ICR. RESUME L'empreinte génomique parentale est un mécanisme épigénétique de régulation transcriptionelle qui se traduit par une expression différentielle des deux allèles de certains gènes, en fonction de leur origine parentale. L'exemple le mieux caractérisé de gènes soumis à l'empreinte génomique parentale est le locus Igf2/H19, qui est aussi le plus fréquemment altéré par relaxation d'empreinte (en anglais: loss of imprinting, LOI) dans les cancers. Cette relaxation d'empreinte est aussi associée à de nombreuses maladies héréditaires, ainsi qu'à de nombreux cancers chez l'enfant et l'adulte. Dans les cellules somatiques, les différences d'expression des allèles réciproques H19 et Ig12 est sous le contrôle d'une région ICR (Imprinting Control Region). La méthylation de cette région ICR régule l'ancrage de la protéine à douze doigts de zinc CTCF, qui se lie spécifiquement à l'ICR maternel non-méthylé, atténuant ainsi l'expression de Igf2, alors qu'elle ne s'ancre pas à l'ICR paternel méthyle. Le mécanisme qui accompagne la méthylation initiale de la région ICR durant la gamétogenèse n'a toujours pas été élucidé. L'hypothèse actuelle propose que la différence de méthylation entre l'ADN maternel et paternel résulte de l'expression de protéines propres aux zones germinales. Notre laboratoire a récemment identifié une nouvelle protéine à douze doigts de zinc, CTCF-T (aussi dénommée CTCFL et BORRIS), qui est exprimée uniquement dans les cellules germinales mâles, dont la partie à douze doigts de zinc est fortement homologue à la protéine CTCF. La séquence d'acides aminés de part et d'autre de cette région est quant à elle très divergente, ce qui implique que CTCF-T se lie sans doute au même ADN cible que CTCF, mais possède des fonctions différentes. De plus, l'expression de CTCF-T et de CTCF s'oppose mutuellement; l'expression de la protéine CTCF-T (cellules CTCF-T positives, CTCF negatives) qui a lieu pendant la spermatogenèse coïncide avec la reprogrammation épigénétique, notamment la méthylation de novo de l'ADN. La présente étude démontre le rôle essentiel joué par la protéine CTCF-T dans l'acquisition de l'empreinte génomique parentale. Nous montrons ici que CTCF-T s'associe in vivo avec les régions ICR des loci Igf2/H19 et Dlk/Gt12. Nous avons également identifié deux nouvelles protéines qui interagissent avec CTCF-T : une protéine arginine méthyl transférase PRMT7, et un variant de l'histone H2A, riche en arginine, que nous avons dénommé trH2A. Ces interactions ont été analysées plus en détail, et confinnent que ces deux protéines s'associent avec la région N-terminale de CTCF-T. Aussi, nous présentons une interaction de la région N-terminale de CTCF-T avec les histones H1, H2, et H3. Ces résultats suggèrent que CTCF-T est une protéine qui se lie spécifiquement aux régions ICR, qui s'associe avec différents histones et qui recrute PRMT7. PRMT7 possède une activité méthyl-tansférase envers les histones. Il a été montré que la méthylation des histones marque certains endroits de la chromatine, dirigeant ainsi la méthylation de l'ADN. Notre hypothèse est donc la suivante : la protéine CTCF-T sert de base qui dirige la méthylation des histones par PRMT7 dans les régions ICR, ce qui contribue à marquer la chromatine pour le recrutement de nouvelles méthyl transférases pour méthyler l'ADN. Afin de valider cette hypothèse, nous avons développé un système de méthylation de l'ADN in vivo, dans des oeufs de Xenopus laevis, dans le noyau desquels nous avons mico-injecté la région ICR du locus H19, ainsi que différents vecteurs d'expression pour CTCF-T, PRMT7, et les de novo méthyl transférases (Dnmt3a, Dnmt3b et Dnmt3L). Les CpGs méthyles de la région ICR du locus H19 ont été analysé 48 et 72 heures après l'injection. Cette technique nous a permis de démontrer que les CpGs de la région ICR sont méthyles en présence de CTCF-T et de PRMT7, tandis que les contrôles injectés seulement avec la région ICR ne présentent aucun signe de méthylation. De plus, nous démontrons pour la première fois que la protéine méthyl transférase Dnmt3L est déterminant pour l'établissement de l'empreinte génomique parentale au niveau de la région ICR du locus H19. Aussi, nous confirmons que les activités méthyl transférases de Dnmt3a et Dnmt3b sont complémentaires. Nos données indiquent que les trois protéines Dnmt3 sont impliquées dans la méthylation de l'ADN. En conclusion, nous proposons un mécanisme responsable de la mise en place de nouvelles empreintes génomiques pendant la spermatogenèse : le complexe protéique CTCF-T/PRMT7 dirige la méthylation des histones aboutissant à la méthylation de novo de l'ADN au locus H19.
Resumo:
Targeted mutagenesis directed by oligonucleotides (ONs) is a promising method for manipulating the genome in higher eukaryotes. In this study, we have compared gene editing by different ONs on two new target sequences, the eBFP and the rd1 mutant photoreceptor betaPDE cDNAs, which were integrated as single copy transgenes at the same genomic site in 293T cells. Interestingly, antisense ONs were superior to sense ONs for one target only, showing that target sequence can by itself impart strand-bias in gene editing. The most efficient ONs were short 25 nt ONs with flanking locked nucleic acids (LNAs), a chemistry that had only been tested for targeted nucleotide mutagenesis in yeast, and 25 nt ONs with phosphorothioate linkages. We showed that LNA-modified ONs mediate dose-dependent target modification and analyzed the importance of LNA position and content. Importantly, when using ONs with flanking LNAs, targeted gene modification was stably transmitted during cell division, which allowed reliable cloning of modified cells, a feature essential for further applications in functional genomics and gene therapy. Finally, we showed that ONs with flanking LNAs aimed at correcting the rd1 stop mutation could promote survival of photoreceptors in retinas of rd1 mutant mice, suggesting that they are also active in vivo.
Resumo:
Recombinant vaccinia virus with tumour cell specificity may provide a versatile tool either for direct lysis of cancer cells or for the targeted transfer of genes encoding immunomodulatory molecules. We report the expression of a single chain antibody on the surface of extracellular enveloped vaccinia virus. The wild-type haemagglutinin, an envelope glycoprotein which is not required for viral infection and replication, was replaced by haemagglutinin fusion molecules carrying a single chain antibody directed against the tumour-associated antigen ErbB2. ErbB2 is an epidermal growth factor receptor-related tyrosine kinase overexpressed in a high percentage of human adenocarcinomas. Two fusion proteins carrying the single chain antibody at different NH2-terminal positions were expressed and exposed at the envelope of the corresponding recombinant viruses. The construct containing the antibody at the site of the immunoglobulin-like loop of the haemagglutinin was able to bind solubilized ErbB2. This is the first report of replacement of a vaccinia virus envelope protein by a specific recognition structure and represents a first step towards modifying the host cell tropism of the virus.
Resumo:
Abstract Context. Seizures during intoxications with pharmaceuticals are a well-known complication. However, only a few studies report on drugs commonly involved and calculate the seizure potential of these drugs. Objectives. To identify the pharmaceutical drugs most commonly associated with seizures after single-agent overdose, the seizure potential of these pharmaceuticals, the age-distribution of the cases with seizures and the ingested doses. Methods. A retrospective review of acute single-agent exposures to pharmaceuticals reported to the Swiss Toxicological Information Centre (STIC) between January 1997 and December 2010 was conducted. Exposures which resulted in at least one seizure were identified. The seizure potential of a pharmaceutical was calculated by dividing the number of cases with seizures by the number of all cases recorded with that pharmaceutical. Data were analyzed using descriptive statistics. Results. We identified 15,441 single-agent exposures. Seizures occurred in 313 cases. The most prevalent pharmaceuticals were mefenamic acid (51 of the 313 cases), citalopram (34), trimipramine (27), venlafaxine (23), tramadol (15), diphenhydramine (14), amitriptyline (12), carbamazepine (11), maprotiline (10), and quetiapine (10). Antidepressants were involved in 136 cases. Drugs with a high seizure potential were bupropion (31.6%, seizures in 6 of 19 cases, 95% CI: 15.4-50.0%), maprotiline (17.5%, 10/57, 95% CI: 9.8-29.4%), venlafaxine (13.7%, 23/168, 95% CI: 9.3-19.7%), citalopram (13.1%, 34/259, 95% CI: 9.5-17.8%), and mefenamic acid (10.9%, 51/470, 95% CI: 8.4-14.0%). In adolescents (15-19y/o) 23.9% (95% CI: 17.6-31.7%) of the cases involving mefenamic acid resulted in seizures, but only 5.7% (95% CI: 3.3-9.7%) in adults (≥ 20y/o; p < 0.001). For citalopram these numbers were 22.0% (95% CI: 12.8-35.2%) and 10.9% (95% CI: 7.1-16.4%), respectively (p = 0.058). The probability of seizures with mefenamic acid, citalopram, trimipramine, and venlafaxine increased as the ingested dose increased. Conclusions. Antidepressants were frequently associated with seizures in overdose, but other pharmaceuticals, as mefenamic acid, were also associated with seizures in a considerable number of cases. Bupropion was the pharmaceutical with the highest seizure potential even if overdose with bupropion was uncommon in our sample. Adolescents might be more susceptible to seizures after mefenamic acid overdose than adults. "Part of this work is already published as a conference abstract for the XXXIV International Congress of the European Association of Poisons Centres and Clinical Toxicologists (EAPCCT) 27-30 May 2014, Brussels, Belgium." Abstract 8, Clin Toxicol 2014;52(4):298.
Resumo:
Many new gene copies emerged by gene duplication in hominoids, but little is known with respect to their functional evolution. Glutamate dehydrogenase (GLUD) is an enzyme central to the glutamate and energy metabolism of the cell. In addition to the single, GLUD-encoding gene present in all mammals (GLUD1), humans and apes acquired a second GLUD gene (GLUD2) through retroduplication of GLUD1, which codes for an enzyme with unique, potentially brain-adapted properties. Here we show that whereas the GLUD1 parental protein localizes to mitochondria and the cytoplasm, GLUD2 is specifically targeted to mitochondria. Using evolutionary analysis and resurrected ancestral protein variants, we demonstrate that the enhanced mitochondrial targeting specificity of GLUD2 is due to a single positively selected glutamic acid-to-lysine substitution, which was fixed in the N-terminal mitochondrial targeting sequence (MTS) of GLUD2 soon after the duplication event in the hominoid ancestor approximately 18-25 million years ago. This MTS substitution arose in parallel with two crucial adaptive amino acid changes in the enzyme and likely contributed to the functional adaptation of GLUD2 to the glutamate metabolism of the hominoid brain and other tissues. We suggest that rapid, selectively driven subcellular adaptation, as exemplified by GLUD2, represents a common route underlying the emergence of new gene functions.
Resumo:
Aim The aim of this study was to determine the number of successful establishments of the invasive Argentine ant outside native range and to see whether introduced supercolonies have resulted from single or multiple introductions. We also compared the genetic diversity of native versus introduced supercolonies to assess the size of the propagules (i.e. the number of founding individuals) at the origin of the introduced supercolonies. Location Global. Methods We used mitochondrial DNA (mtDNA) markers and microsatellite loci to study 39 supercolonies of the Argentine ant Linepithema humile covering both the native (n = 25) and introduced range (n = 14). Results Data from three mitochondrial genes and 13 nuclear microsatellites suggest that the introduced supercolonies studied originated from at least seven founding events out of the native area in Argentina (primary introductions). The distribution of mtDNA haplotypes also suggests that supercolonies in the introduced range each derive from a single source supercolony and that one of these source supercolonies has been particularly successful, being the basis of many introduced populations spread across the world. Comparison of the genetic diversity of supercolonies based on the five most diverse loci also revealed that native and introduced supercolonies have greatly overlapping ranges of diversity, although the genetic diversity is on average less in introduced than in native supercolonies. Main conclusions Both primary introductions (from the native range) and secondary introductions (from sites with established invasive supercolonies) were important in the global expansion of the Argentine ant. In combination with the similar social organization of colonies in the native and introduced range, this indicates that invasiveness did not evolve recently as a unique and historically contingent event (e.g. reduction of genetic diversity) in this species. Rather, native L. humile supercolonies have characteristics that make them pre-adapted to invade new - and in particular disturbed - habitats when given the opportunity. These results have important implications with regard to possible strategies to be used to control invasive ants.
Resumo:
A structural and functional analysis of the 5'-end region of the Xenopus laevis vitellogenin gene A1 revealed two transcription initiation sites located 1.8 kilobases apart. A RNA polymerase II binding assay indicates that both promoters form initiation complexes efficiently. In vitro, using a transcription assay derived from a HeLa whole-cell extract, the upstream promoter is more than 10-fold stronger than the downstream one. In contrast, both promoters have a similar strength in a HeLa nuclear extract. In vivo, that is in estrogen-stimulated hepatocytes, it is the downstream promoter homologous to the one used by the other members of the vitellogenin gene family, which is 50-fold stronger than the upstream promoter. Thus, if functional vitellogenin mRNA results from this latter activity, it would contribute less than 1% to the synthesis of vitellogenin by fully induced Xenopus hepatocytes expressing the four vitellogenin genes. In contrast, both gene A1 promoters are silent in uninduced hepatocytes. Transfection experiments using the Xenopus cell line B3.2 in which estrogen-responsiveness has been introduced reveal that the strong downstream promoter is controlled by an estrogen responsive element (ERE) located 330 bp upstream of it. The upstream promoter can also be controlled by the same ERE. Since the region comprising the upstream promoter is flanked by a 200 base pair long inverted repeat with stretches of homology to other regions of the X. laevis genome, we speculate that it might have been inserted upstream of the vitellogenin gene A1 by a recombination event and consequently brought under control of the ERE lying 1.5 kilobases downstream.
Resumo:
This prospective study compares repetitive thick-slab single-shot projection magnetic resonance cholangiopancreatography (MRCP) with endoscopic ultrasonography (EUS) for the detection of choledocholithiasis. Fifty-seven consecutive patients (36 women, mean age 61) referred for suspected choledocholithiasis underwent MRCP, followed by EUS. Each procedure was performed by different operators blinded to the results of the other investigation. MR technique included a turbo spin-echo T2-weighted axial sequence with selective fat saturation (SPIR/TSE, TE=70 ms, TR=1,600 ms), followed by coronal dynamic MRCP. The same thick-slab slice was sequentially acquired 12 times as breath-hold single-shot projection imaging (SSh, TE=900 ms, TE=8,000 ms) centred on the common bile duct (CBD). Two experienced radiologists independently and blindly evaluated MR images for the detection of CBD stones. Their inter-observer agreement kappa was determined. Secondly, the two observers read MR images in consensus again. CBD stones were demonstrated in 18 out of 57 patients (31.6 %) and confirmed by endoscopic retrograde cholangiography (ERCP, n=17) or intraoperative cholangiography (n=1). Clinical follow-up served as the "gold standard" in patients with negative results without following invasive procedure (n=28). Sensitivity, specificity, accuracy, positive and negative predictive value for MRCP resulting from consensus reading were 94.9%, 94.4%, 94.7%, 97.4% and 89.5%, respectively. Corresponding values of EUS were 97.4%, 94.4%, 96.5%, 97.4% and 94.4%. Inter-observer agreement kappa was 0.81. Repetitive thick-slab single-shot projection MRCP is an accurate non-invasive imaging modality for suspected choledocholithiasis and should be increasingly used to select those patients who require a subsequent therapeutic procedure, namely ERCP.