919 resultados para shrubland ecosystem


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compensatory population dynamics among species stabilise aggregate community variables. Inter-specific competition is thought to be stabilising as it promotes asynchrony among populations. However, we know little about other inter-specific interactions, such as facilitation and granivory. Such interactions are also likely to influence population synchrony and community stability, especially in harsh environments where they are thought to have relatively strong effects in plant communities. We use a manipulative experiment to test the effects of granivores (harvester ants) and nurse plants (dwarf shrubs) on annual plant community dynamics in the Negev desert, Israel. We present evidence for weak and inconsistent effects of harvester ants on plant abundance and on population and community stability. By contrast, we show that annual communities under shrubs were more species rich, had higher plant density and were temporally less variable than communities in the inter-shrub matrix. Species richness and plant abundance were also more resistant to drought in the shrub under-storey compared with the inter-shrub matrix, although population dynamics in both patch types were synchronised. Hence, we show that inter-specific interactions other than competition affect community stability, and that hypothesised mechanisms linking compensatory dynamics and community stability may not operate to the same extent in arid plant communities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By 2030, the world’s human population could rise to 8 billion people and world food demand may increase by 50%. Although food production outpaced population growth in the 20th century, it is clear that the environmental costs of these increases cannot be sustained into the future. This challenges us to re-think the way we produce food. We argue that viewing food production systems within an ecosystems context provides the basis for 21st century food production. An ecosystems view recognises that food production systems depend on ecosystem services but also have ecosystem impacts. These dependencies and impacts are often poorly understood by many people and frequently overlooked. We provide an overview of the key ecosystem services involved in different food production systems, including crop and livestock production, aquaculture and the harvesting of wild nature. We highlight the important ecosystem impacts of food production systems, including habitat loss and degradation, changes to water and nutrient cycles across a range of scales, and biodiversity loss. These impacts often undermine the very ecosystem services on which food production systems depend, as well as other ecosystem services unrelated to food. We argue that addressing these impacts requires us to re-design food production systems to recognise and manage the limitations on production imposed by the ecosystems within which they are embedded, and increasingly embrace a more multifunctional view of food production systems and associated ecosystems. In this way, we should be able to produce food more sustainably whilst inflicting less damage on other important ecosystem services.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arthropods that have a direct impact on crop production (i.e. pests, natural enemies and pollinators) can be influenced by both local farm management and the context within which the fields occur in the wider landscape. However, the contributions and spatial scales at which these drivers operate and interact are not fully understood, particularly in the developing world. The impact of both local management and landscape context on insect pollinators and natural enemy communities and on their capacity to deliver related ecosystem services to an economically important tropical crop, pigeonpea was investigated. The study was conducted in nine paired farms across a gradient of increasing distance to semi-native vegetation in Kibwezi, Kenya. Results show that proximity of fields to semi-native habitats negatively affected pollinator and chewing insect abundance. Within fields, pesticide use was a key negative predictor of pollinator, pest and foliar active predator abundance. On the contrary, fertilizer application significantly enhanced pollinator and both chewing and sucking insect pest abundance. At a 1 km spatial scale of fields, there were significant negative effects of the number of semi-native habitat patches within fields dominated by mass flowering pigeonpea on pollinators abundance. For service provision, a significant decline in fruit set when insects were excluded from flowers was recorded. This study reveals the interconnections of pollinators, predators and pests with pigeonpea crop. For sustainable yields and to conserve high densities of both pollinators and predators of pests within pigeonpea landscapes, it is crucial to target the adoption of less disruptive farm management practices such as reducing pesticide and fertilizer inputs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is concern that insect pollinators, such as honey bees, are currently declining in abundance, and are under serious threat from environmental changes such as habitat loss and climate change; the use of pesticides in intensive agriculture, and emerging diseases. This paper aims to evaluate how much public support there would be in preventing further decline to maintain the current number of bee colonies in the UK. The contingent valuation method (CVM) was used to obtain the willingness to pay (WTP) for a theoretical pollinator protection policy. Respondents were asked whether they would be WTP to support such a policy and how much would they pay? Results show that the mean WTP to support the bee protection policy was £1.37/week/household. Based on there being 24.9 million households in the UK, this is equivalent to £1.77 billion per year. This total value can show the importance of maintaining the overall pollination service to policy makers. We compare this total with estimates obtained using a simple market valuation of pollination for the UK.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a model-data fusion (MDF) inter-comparison project (REFLEX), which compared various algorithms for estimating carbon (C) model parameters consistent with both measured carbon fluxes and states and a simple C model. Participants were provided with the model and with both synthetic net ecosystem exchange (NEE) of CO2 and leaf area index (LAI) data, generated from the model with added noise, and observed NEE and LAI data from two eddy covariance sites. Participants endeavoured to estimate model parameters and states consistent with the model for all cases over the two years for which data were provided, and generate predictions for one additional year without observations. Nine participants contributed results using Metropolis algorithms, Kalman filters and a genetic algorithm. For the synthetic data case, parameter estimates compared well with the true values. The results of the analyses indicated that parameters linked directly to gross primary production (GPP) and ecosystem respiration, such as those related to foliage allocation and turnover, or temperature sensitivity of heterotrophic respiration, were best constrained and characterised. Poorly estimated parameters were those related to the allocation to and turnover of fine root/wood pools. Estimates of confidence intervals varied among algorithms, but several algorithms successfully located the true values of annual fluxes from synthetic experiments within relatively narrow 90% confidence intervals, achieving >80% success rate and mean NEE confidence intervals <110 gC m−2 year−1 for the synthetic case. Annual C flux estimates generated by participants generally agreed with gap-filling approaches using half-hourly data. The estimation of ecosystem respiration and GPP through MDF agreed well with outputs from partitioning studies using half-hourly data. Confidence limits on annual NEE increased by an average of 88% in the prediction year compared to the previous year, when data were available. Confidence intervals on annual NEE increased by 30% when observed data were used instead of synthetic data, reflecting and quantifying the addition of model error. Finally, our analyses indicated that incorporating additional constraints, using data on C pools (wood, soil and fine roots) would help to reduce uncertainties for model parameters poorly served by eddy covariance data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecosystem fluxes of energy, water, and CO2 result in spatial and temporal variations in atmospheric properties. In principle, these variations can be used to quantify the fluxes through inverse modelling of atmospheric transport, and can improve the understanding of processes and falsifiability of models. We investigated the influence of ecosystem fluxes on atmospheric CO2 in the vicinity of the WLEF-TV tower in Wisconsin using an ecophysiological model (Simple Biosphere, SiB2) coupled to an atmospheric model (Regional Atmospheric Modelling System). Model parameters were specified from satellite imagery and soil texture data. In a companion paper, simulated fluxes in the immediate tower vicinity have been compared to eddy covariance fluxes measured at the tower, with meteorology specified from tower sensors. Results were encouraging with respect to the ability of the model to capture observed diurnal cycles of fluxes. Here, the effects of fluxes in the tower footprint were also investigated by coupling SiB2 to a high-resolution atmospheric simulation, so that the model physiology could affect the meteorological environment. These experiments were successful in reproducing observed fluxes and concentration gradients during the day and at night, but revealed problems during transitions at sunrise and sunset that appear to be related to the canopy radiation parameterization in SiB2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper summarizes and analyses available data on the surface energy balance of Arctic tundra and boreal forest. The complex interactions between ecosystems and their surface energy balance are also examined, including climatically induced shifts in ecosystem type that might amplify or reduce the effects of potential climatic change. High latitudes are characterized by large annual changes in solar input. Albedo decreases strongly from winter, when the surface is snow-covered, to summer, especially in nonforested regions such as Arctic tundra and boreal wetlands. Evapotranspiration (QE) of high-latitude ecosystems is less than from a freely evaporating surface and decreases late in the season, when soil moisture declines, indicating stomatal control over QE, particularly in evergreen forests. Evergreen conifer forests have a canopy conductance half that of deciduous forests and consequently lower QE and higher sensible heat flux (QH). There is a broad overlap in energy partitioning between Arctic and boreal ecosystems, although Arctic ecosystems and light taiga generally have higher ground heat flux because there is less leaf and stem area to shade the ground surface, and the thermal gradient from the surface to permafrost is steeper. Permafrost creates a strong heat sink in summer that reduces surface temperature and therefore heat flux to the atmosphere. Loss of permafrost would therefore amplify climatic warming. If warming caused an increase in productivity and leaf area, or fire caused a shift from evergreen to deciduous forest, this would increase QE and reduce QH. Potential future shifts in vegetation would have varying climate feedbacks, with largest effects caused by shifts from boreal conifer to shrubland or deciduous forest (or vice versa) and from Arctic coastal to wet tundra. An increase of logging activity in the boreal forests appears to reduce QE by roughly 50% with little change in QH, while the ground heat flux is strongly enhanced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rising demands for agricultural products will increase pressure to further intensify crop production, while negative environmental impacts have to be minimized. Ecological intensification entails the environmentally friendly replacement of anthropogenic inputs and/or enhancement of crop productivity, by including regulating and supporting ecosystem services management in agricultural practices. Effective ecological intensification requires an understanding of the relations between land use at different scales and the community composition of ecosystem service-providing organisms above and below ground, and the flow, stability, contribution to yield, and management costs of the multiple services delivered by these organisms. Research efforts and investments are particularly needed to reduce existing yield gaps by integrating context-appropriate bundles of ecosystem services into crop production systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect pollinators of crops and wild plants are under threat globally and their decline or loss could have profound economic and environmental consequences. Here, we argue that multiple anthropogenic pressures – including land-use intensification, climate change, and the spread of alien species and diseases – are primarily responsible for insect-pollinator declines. We show that a complex interplay between pressures (eg lack of food sources, diseases, and pesticides) and biological processes (eg species dispersal and interactions) at a range of scales (from genes to ecosystems) underpins the general decline in insect-pollinator populations. Interdisciplinary research on the nature and impacts of these interactions will be needed if human food security and ecosystem function are to be preserved. We highlight key areas that require research focus and outline some practical steps to alleviate the pressures on pollinators and the pollination services they deliver to wild and crop plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Farmland invertebrates play a pivotal role in the provision of ecosystem services, i.e. services that benefit humans. For example, bumblebees, solitary bees and honeybees, are crucial to the pollination of many of the world's crops and wildflowers, with over 70% of the world's major food crops dependent on the pollination services provided by these insects. The larvae of some butterfly species are considered to be pests; however, together with moth and sawfly larvae, they represent a key dietary component for many farmland birds. Spiders and ground beetles predate on crop pests including aphids, whilst soil macrofauna such as earthworms are vital for soil fertility services and nutrient recycling. Despite their importance, population declines of invertebrates have been observed during the last sixty years in the UK and NW Europe. For example, seven UK bumblebee species are in decline, and in the last 20 years, the species Bombus subterraneus (short-haired bumblebee) has become extinct, whilst there was a 54% decline in honeybee colony numbers in England from 1985 to 2005. Comparable trends have been documented for butterflies with a 23% decline in UK farmland species such as Anthocharis cardamines (orange tip) between 1990 and 2007. These declines have been widely attributed to the modern intensive arable management practices that have been developed to maximise crop yield. For example, loss and fragmentation of foraging and nesting habitats, including species-rich meadows and hedgerows, have been implicated in the decline of bees and butterflies. Increased use of herbicides and fertilisers has caused detrimental effects on many plant species with negative consequences for predatory invertebrates such as spiders and beetles which rely on plants for food and shelter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Requirements for research, practices and policies affecting soil management in relation to global food security are reviewed. Managing soil organic carbon (C) is central because soil organic matter influences numerous soil properties relevant to ecosystem functioning and crop growth. Even small changes in total C content can have disproportionately large impacts on key soil physical properties. Practices to encourage maintenance of soil C are important for ensuring sustainability of all soil functions. Soil is a major store of C within the biosphere – increases or decreases in this large stock can either mitigate or worsen climate change. Deforestation, conversion of grasslands to arable cropping and drainage of wetlands all cause emission of C; policies and international action to minimise these changes are urgently required. Sequestration of C in soil can contribute to climate change mitigation but the real impact of different options is often misunderstood. Some changes in management that are beneficial for soil C, increase emissions of nitrous oxide (a powerful greenhouse gas) thus cancelling the benefit. Research on soil physical processes and their interactions with roots can lead to improved and novel practices to improve crop access to water and nutrients. Increased understanding of root function has implications for selection and breeding of crops to maximise capture of water and nutrients. Roots are also a means of delivering natural plant-produced chemicals into soil with potentially beneficial impacts. These include biocontrol of soil-borne pests and diseases and inhibition of the nitrification process in soil (conversion of ammonium to nitrate) with possible benefits for improved nitrogen use efficiency and decreased nitrous oxide emission. The application of molecular methods to studies of soil organisms, and their interactions with roots, is providing new understanding of soil ecology and the basis for novel practical applications. Policy makers and those concerned with development of management approaches need to keep a watching brief on emerging possibilities from this fast-moving area of science. Nutrient management is a key challenge for global food production: there is an urgent need to increase nutrient availability to crops grown by smallholder farmers in developing countries. Many changes in practices including inter-cropping, inclusion of nitrogen-fixing crops, agroforestry and improved recycling have been clearly demonstrated to be beneficial: facilitating policies and practical strategies are needed to make these widely available, taking account of local economic and social conditions. In the longer term fertilizers will be essential for food security: policies and actions are needed to make these available and affordable to small farmers. In developed regions, and those developing rapidly such as China, strategies and policies to manage more precisely the necessarily large flows of nutrients in ways that minimise environmental damage are essential. A specific issue is to minimise emissions of nitrous oxide whilst ensuring sufficient nitrogen is available for adequate food production. Application of known strategies (through either regulation or education), technological developments, and continued research to improve understanding of basic processes will all play a part. Decreasing soil erosion is essential, both to maintain the soil resource and to minimise downstream damage such as sedimentation of rivers with adverse impacts on fisheries. Practical strategies are well known but often have financial implications for farmers. Examples of systems for paying one group of land users for ecosystem services affecting others exist in several parts of the world and serve as a model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amid a worldwide increase in tree mortality, mountain pine beetles (Dendroctonus ponderosae Hopkins) have led to the death of billions of trees from Mexico to Alaska since 2000. This is predicted to have important carbon, water and energy balance feedbacks on the Earth system. Counter to current projections, we show that on a decadal scale, tree mortality causes no increase in ecosystem respiration from scales of several square metres up to an 84 km2 valley. Rather, we found comparable declines in both gross primary productivity and respiration suggesting little change in net flux, with a transitory recovery of respiration 6–7 years after mortality associated with increased incorporation of leaf litter C into soil organic matter, followed by further decline in years 8–10. The mechanism of the impact of tree mortality caused by these biotic disturbances is consistent with reduced input rather than increased output of carbon.