843 resultados para service-oriented grid computing systems
Resumo:
Wireless sensor networks are emerging as effective tools in the gathering and dissemination of data. They can be applied in many fields including health, environmental monitoring, home automation and the military. Like all other computing systems it is necessary to include security features, so that security sensitive data traversing the network is protected. However, traditional security techniques cannot be applied to wireless sensor networks. This is due to the constraints of battery power, memory, and the computational capacities of the miniature wireless sensor nodes. Therefore, to address this need, it becomes necessary to develop new lightweight security protocols. This dissertation focuses on designing a suite of lightweight trust-based security mechanisms and a cooperation enforcement protocol for wireless sensor networks. This dissertation presents a trust-based cluster head election mechanism used to elect new cluster heads. This solution prevents a major security breach against the routing protocol, namely, the election of malicious or compromised cluster heads. This dissertation also describes a location-aware, trust-based, compromise node detection, and isolation mechanism. Both of these mechanisms rely on the ability of a node to monitor its neighbors. Using neighbor monitoring techniques, the nodes are able to determine their neighbors’ reputation and trust level through probabilistic modeling. The mechanisms were designed to mitigate internal attacks within wireless sensor networks. The feasibility of the approach is demonstrated through extensive simulations. The dissertation also addresses non-cooperation problems in multi-user wireless sensor networks. A scalable lightweight enforcement algorithm using evolutionary game theory is also designed. The effectiveness of this cooperation enforcement algorithm is validated through mathematical analysis and simulation. This research has advanced the knowledge of wireless sensor network security and cooperation by developing new techniques based on mathematical models. By doing this, we have enabled others to build on our work towards the creation of highly trusted wireless sensor networks. This would facilitate its full utilization in many fields ranging from civilian to military applications.
Resumo:
Fueled by increasing human appetite for high computing performance, semiconductor technology has now marched into the deep sub-micron era. As transistor size keeps shrinking, more and more transistors are integrated into a single chip. This has increased tremendously the power consumption and heat generation of IC chips. The rapidly growing heat dissipation greatly increases the packaging/cooling costs, and adversely affects the performance and reliability of a computing system. In addition, it also reduces the processor's life span and may even crash the entire computing system. Therefore, dynamic thermal management (DTM) is becoming a critical problem in modern computer system design. Extensive theoretical research has been conducted to study the DTM problem. However, most of them are based on theoretically idealized assumptions or simplified models. While these models and assumptions help to greatly simplify a complex problem and make it theoretically manageable, practical computer systems and applications must deal with many practical factors and details beyond these models or assumptions. The goal of our research was to develop a test platform that can be used to validate theoretical results on DTM under well-controlled conditions, to identify the limitations of existing theoretical results, and also to develop new and practical DTM techniques. This dissertation details the background and our research efforts in this endeavor. Specifically, in our research, we first developed a customized test platform based on an Intel desktop. We then tested a number of related theoretical works and examined their limitations under the practical hardware environment. With these limitations in mind, we developed a new reactive thermal management algorithm for single-core computing systems to optimize the throughput under a peak temperature constraint. We further extended our research to a multicore platform and developed an effective proactive DTM technique for throughput maximization on multicore processor based on task migration and dynamic voltage frequency scaling technique. The significance of our research lies in the fact that our research complements the current extensive theoretical research in dealing with increasingly critical thermal problems and enabling the continuous evolution of high performance computing systems.
Resumo:
Catering to society's demand for high performance computing, billions of transistors are now integrated on IC chips to deliver unprecedented performances. With increasing transistor density, the power consumption/density is growing exponentially. The increasing power consumption directly translates to the high chip temperature, which not only raises the packaging/cooling costs, but also degrades the performance/reliability and life span of the computing systems. Moreover, high chip temperature also greatly increases the leakage power consumption, which is becoming more and more significant with the continuous scaling of the transistor size. As the semiconductor industry continues to evolve, power and thermal challenges have become the most critical challenges in the design of new generations of computing systems. ^ In this dissertation, we addressed the power/thermal issues from the system-level perspective. Specifically, we sought to employ real-time scheduling methods to optimize the power/thermal efficiency of the real-time computing systems, with leakage/ temperature dependency taken into consideration. In our research, we first explored the fundamental principles on how to employ dynamic voltage scaling (DVS) techniques to reduce the peak operating temperature when running a real-time application on a single core platform. We further proposed a novel real-time scheduling method, “M-Oscillations” to reduce the peak temperature when scheduling a hard real-time periodic task set. We also developed three checking methods to guarantee the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research from single core platform to multi-core platform. We investigated the energy estimation problem on the multi-core platforms and developed a light weight and accurate method to calculate the energy consumption for a given voltage schedule on a multi-core platform. Finally, we concluded the dissertation with elaborated discussions of future extensions of our research. ^
Resumo:
For the past several decades, we have experienced the tremendous growth, in both scale and scope, of real-time embedded systems, thanks largely to the advances in IC technology. However, the traditional approach to get performance boost by increasing CPU frequency has been a way of past. Researchers from both industry and academia are turning their focus to multi-core architectures for continuous improvement of computing performance. In our research, we seek to develop efficient scheduling algorithms and analysis methods in the design of real-time embedded systems on multi-core platforms. Real-time systems are the ones with the response time as critical as the logical correctness of computational results. In addition, a variety of stringent constraints such as power/energy consumption, peak temperature and reliability are also imposed to these systems. Therefore, real-time scheduling plays a critical role in design of such computing systems at the system level. We started our research by addressing timing constraints for real-time applications on multi-core platforms, and developed both partitioned and semi-partitioned scheduling algorithms to schedule fixed priority, periodic, and hard real-time tasks on multi-core platforms. Then we extended our research by taking temperature constraints into consideration. We developed a closed-form solution to capture temperature dynamics for a given periodic voltage schedule on multi-core platforms, and also developed three methods to check the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research by incorporating the power/energy constraint with thermal awareness into our research problem. We investigated the energy estimation problem on multi-core platforms, and developed a computation efficient method to calculate the energy consumption for a given voltage schedule on a multi-core platform. In this dissertation, we present our research in details and demonstrate the effectiveness and efficiency of our approaches with extensive experimental results.
Resumo:
Wireless sensor networks are emerging as effective tools in the gathering and dissemination of data. They can be applied in many fields including health, environmental monitoring, home automation and the military. Like all other computing systems it is necessary to include security features, so that security sensitive data traversing the network is protected. However, traditional security techniques cannot be applied to wireless sensor networks. This is due to the constraints of battery power, memory, and the computational capacities of the miniature wireless sensor nodes. Therefore, to address this need, it becomes necessary to develop new lightweight security protocols. This dissertation focuses on designing a suite of lightweight trust-based security mechanisms and a cooperation enforcement protocol for wireless sensor networks. This dissertation presents a trust-based cluster head election mechanism used to elect new cluster heads. This solution prevents a major security breach against the routing protocol, namely, the election of malicious or compromised cluster heads. This dissertation also describes a location-aware, trust-based, compromise node detection, and isolation mechanism. Both of these mechanisms rely on the ability of a node to monitor its neighbors. Using neighbor monitoring techniques, the nodes are able to determine their neighbors’ reputation and trust level through probabilistic modeling. The mechanisms were designed to mitigate internal attacks within wireless sensor networks. The feasibility of the approach is demonstrated through extensive simulations. The dissertation also addresses non-cooperation problems in multi-user wireless sensor networks. A scalable lightweight enforcement algorithm using evolutionary game theory is also designed. The effectiveness of this cooperation enforcement algorithm is validated through mathematical analysis and simulation. This research has advanced the knowledge of wireless sensor network security and cooperation by developing new techniques based on mathematical models. By doing this, we have enabled others to build on our work towards the creation of highly trusted wireless sensor networks. This would facilitate its full utilization in many fields ranging from civilian to military applications.
Resumo:
Wireless Sensor and Actuator Networks (WSAN) are a key component in Ubiquitous Computing Systems and have many applications in different knowledge domains. Programming for such networks is very hard and requires developers to know the available sensor platforms specificities, increasing the learning curve for developing WSAN applications. In this work, an MDA (Model-Driven Architecture) approach for WSAN applications development called ArchWiSeN is proposed. The goal of such approach is to facilitate the development task by providing: (i) A WSAN domain-specific language, (ii) a methodology for WSAN application development; and (iii) an MDA infrastructure composed of several software artifacts (PIM, PSMs and transformations). ArchWiSeN allows the direct contribution of domain experts in the WSAN application development without the need of specialized knowledge on WSAN platforms and, at the same time, allows network experts to manage the application requirements without the need for specific knowledge of the application domain. Furthermore, this approach also aims to enable developers to express and validate functional and non-functional requirements of the application, incorporate services offered by WSAN middleware platforms and promote reuse of the developed software artifacts. In this sense, this Thesis proposes an approach that includes all WSAN development stages for current and emerging scenarios through the proposed MDA infrastructure. An evaluation of the proposal was performed by: (i) a proof of concept encompassing three different scenarios performed with the usage of the MDA infrastructure to describe the WSAN development process using the application engineering process, (ii) a controlled experiment to assess the use of the proposed approach compared to traditional method of WSAN application development, (iii) the analysis of ArchWiSeN support of middleware services to ensure that WSAN applications using such services can achieve their requirements ; and (iv) systematic analysis of ArchWiSeN in terms of desired characteristics for MDA tool when compared with other existing MDA tools for WSAN.
Resumo:
High dependability, availability and fault-tolerance are open problems in Service-Oriented Architecture (SOA). The possibility of generating software applications by integrating services from heterogeneous domains, in a reliable way, makes worthwhile to face the challenges inherent to this paradigm. In order to ensure quality in service compositions, some research efforts propose the adoption of verification techniques to identify and correct errors. In this context, exception handling is a powerful mechanism to increase SOA quality. Several research works are concerned with mechanisms for exception propagation on web services, implemented in many languages and frameworks. However, to the extent of our knowledge, no works found evaluates these mechanisms in SOA with regard to the .NET framework. The main contribution of this paper is to evaluate and to propose exception propagation mechanisms in SOA to applications developed within the .NET framework. In this direction, this work: (i)extends a previous study, showing the need to propose a solution to the exception propagation in SOA to applications developed in .NET, and (ii) show a solution, based in model obtained from the results found in (i) and that will be applied in real cases through of faults injections and AOP techniques.
Resumo:
Component-based Software Engineering (CBSE) and Service-Oriented Architecture (SOA) became popular ways to develop software over the last years. During the life-cycle of a software system, several components and services can be developed, evolved and replaced. In production environments, the replacement of core components, such as databases, is often a risky and delicate operation, where several factors and stakeholders should be considered. Service Level Agreement (SLA), according to ITILv3’s official glossary, is “an agreement between an IT service provider and a customer. The agreement consists on a set of measurable constraints that a service provider must guarantee to its customers.”. In practical terms, SLA is a document that a service provider delivers to its consumers with minimum quality of service (QoS) metrics.This work is intended to assesses and improve the use of SLAs to guide the transitioning process of databases on production environments. In particular, in this work we propose SLA-Based Guidelines/Process to support migrations from a relational database management system (RDBMS) to a NoSQL one. Our study is validated by case studies.
Resumo:
The aim of this thesis is to merge two of the emerging paradigms about web programming: RESTful Web Development and Service-Oriented Programming. REST is the main architectural paradigm about web applications, they are characterised by procedural structure which avoid the use of handshaking mechanisms. Even though REST has a standard structure to access the resources of the web applications, the backend side is usually not very modular if not complicated. Service-Oriented Programming, instead, has as one of the fundamental principles, the modularisation of the components. Service-Oriented Applications are characterised by separate modules that allow to simplify the devel- opment of the web applications. There are very few example of integration between these two technologies: it seems therefore reasonable to merge them. In this thesis the methodologies studied to reach this results are explored through an application that helps to handle documents and notes among several users, called MergeFly. The MergeFly practical case, once that all the specifics had been set, will be utilised in order to develop and handle HTTP requests through SOAP. In this document will be first defined the 1) characteristics of the application, 2) SOAP technology, partially introduced the 3) Jolie Language, 4) REST and finally a 5) Jolie-REST implementation will be offered through the MergeFly case. It is indeed implemented a token mechanism for authentication: it has been first discarded sessions and cookies algorithm of authentication in so far not into the pure RESTness theory, even if often used). In the final part the functionality and effectiveness of the results will be evaluated, judging the Jolie-REST duo.
Resumo:
Esta investigación aborda el consumo que los jóvenes universitarios de España y Brasil realizan de las publicaciones para tabletas. A través del estudio de seis casos –las revistas españolas Don, VisàVis y Quality Sport, y los vespertinos brasileños O Globo a Mais, de Río de Janeiro; Estadão Noite, de Sao Paulo; y Diário do Nordeste Plus, de Fortaleza– se aplica una metodología cualitativa, el test de usabilidad, para detectar qué aspectos ralentizan y entorpecen la navegación en las nuevas generaciones de usuarios de medios móviles. A pesar de la influencia de las revistas impresas en la configuración de las publicaciones para tableta, los datos muestran que el usuario necesita “entrenarse” para conocer unas opciones de interacción a veces poco intuitivas o para las que carece de la madurez visual necesaria. Por ello las publicaciones más sencillas obtienen los mejores resultados de usabilidad.
Resumo:
The evolution and maturation of Cloud Computing created an opportunity for the emergence of new Cloud applications. High-performance Computing, a complex problem solving class, arises as a new business consumer by taking advantage of the Cloud premises and leaving the expensive datacenter management and difficult grid development. Standing on an advanced maturing phase, today’s Cloud discarded many of its drawbacks, becoming more and more efficient and widespread. Performance enhancements, prices drops due to massification and customizable services on demand triggered an emphasized attention from other markets. HPC, regardless of being a very well established field, traditionally has a narrow frontier concerning its deployment and runs on dedicated datacenters or large grid computing. The problem with common placement is mainly the initial cost and the inability to fully use resources which not all research labs can afford. The main objective of this work was to investigate new technical solutions to allow the deployment of HPC applications on the Cloud, with particular emphasis on the private on-premise resources – the lower end of the chain which reduces costs. The work includes many experiments and analysis to identify obstacles and technology limitations. The feasibility of the objective was tested with new modeling, architecture and several applications migration. The final application integrates a simplified incorporation of both public and private Cloud resources, as well as HPC applications scheduling, deployment and management. It uses a well-defined user role strategy, based on federated authentication and a seamless procedure to daily usage with balanced low cost and performance.
Resumo:
Interaction is increasingly a public affair, taking place in our theatres, galleries, museums, exhibitions and on the city streets. This raises a new design challenge for HCI, questioning how a performer s interaction with a computer experienced is by spectators. We examine examples from art, performance and exhibition design, comparing them according to the extent to which they hide, partially reveal, transform, reveal or even amplify a performerts manipulations. We also examine the effects of these manipulations including movements, gestures and utterances that take place around direct input and output. This comparison reveals four broad design strategies: `secretive,' where manipulations and effects are largely hidden; `expressive,' where they are revealed, enabling the spectator to fully appreciate the performer's interaction; `magical,' where effects are revealed but the manipulations that caused them are hidden; and finally `suspenseful,' where manipulations are apparent, but effects only get revealed when the spectator takes their turn.
Resumo:
Os mecanismos e técnicas do domínio de Tempo-Real são utilizados quando existe a necessidade de um sistema, seja este um sistema embutido ou de grandes dimensões, possuir determinadas características que assegurem a qualidade de serviço do sistema. Os Sistemas de Tempo-Real definem-se assim como sistemas que possuem restrições temporais rigorosas, que necessitam de apresentar altos níveis de fiabilidade de forma a garantir em todas as instâncias o funcionamento atempado do sistema. Devido à crescente complexidade dos sistemas embutidos, empregam-se frequentemente arquiteturas distribuídas, onde cada módulo é normalmente responsável por uma única função. Nestes casos existe a necessidade de haver um meio de comunicação entre estes, de forma a poderem comunicar entre si e cumprir a funcionalidade desejadas. Devido à sua elevada capacidade e baixo custo a tecnologia Ethernet tem vindo a ser alvo de estudo, com o objetivo de a tornar num meio de comunicação com a qualidade de serviço característica dos sistemas de tempo-real. Como resposta a esta necessidade surgiu na Universidade de Aveiro, o Switch HaRTES, o qual possui a capacidade de gerir os seus recursos dinamicamente, de modo a fornecer à rede onde é aplicado garantias de Tempo-Real. No entanto, para uma arquitetura de rede ser capaz de fornecer aos seus nós garantias de qualidade serviço, é necessário que exista uma especificação do fluxo, um correto encaminhamento de tráfego, reserva de recursos, controlo de admissão e um escalonamento de pacotes. Infelizmente, o Switch HaRTES apesar de possuir todas estas características, não suporta protocolos standards. Neste documento é apresentado então o trabalho que foi desenvolvido para a integração do protocolo SRP no Switch HaRTES.
Resumo:
Public agencies are increasingly required to collaborate with each other in order to provide high-quality e-government services. This collaboration is usually based on the service-oriented approach and supported by interoperability platforms. Such platforms are specialized middleware-based infrastructures enabling the provision, discovery and invocation of interoperable software services. In turn, given that personal data handled by governments are often very sensitive, most governments have developed some sort of legislation focusing on data protection. This paper proposes solutions for monitoring and enforcing data protection laws within an E-government Interoperability Platform. In particular, the proposal addresses requirements posed by the Uruguayan Data Protection Law and the Uruguayan E-government Platform, although it can also be applied in similar scenarios. The solutions are based on well-known integration mechanisms (e.g. Enterprise Service Bus) as well as recognized security standards (e.g. eXtensible Access Control Markup Language) and were completely prototyped leveraging the SwitchYard ESB product.
Resumo:
Heterogeneous computing systems have become common in modern processor architectures. These systems, such as those released by AMD, Intel, and Nvidia, include both CPU and GPU cores on a single die available with reduced communication overhead compared to their discrete predecessors. Currently, discrete CPU/GPU systems are limited, requiring larger, regular, highly-parallel workloads to overcome the communication costs of the system. Without the traditional communication delay assumed between GPUs and CPUs, we believe non-traditional workloads could be targeted for GPU execution. Specifically, this thesis focuses on the execution model of nested parallel workloads on heterogeneous systems. We have designed a simulation flow which utilizes widely used CPU and GPU simulators to model heterogeneous computing architectures. We then applied this simulator to non-traditional GPU workloads using different execution models. We also have proposed a new execution model for nested parallelism allowing users to exploit these heterogeneous systems to reduce execution time.