846 resultados para salivary cortisol
Resumo:
BACKGROUND: The use of salivary diagnostics is increasing because of its noninvasiveness, ease of sampling, and the relatively low risk of contracting infectious organisms. Saliva has been used as a biological fluid to identify and validate RNA targets in head and neck cancer patients. The goal of this study was to develop a robust, easy, and cost-effective method for isolating high yields of total RNA from saliva for downstream expression studies. METHODS: Oral whole saliva (200 mu L) was collected from healthy controls (n = 6) and from patients with head and neck cancer (n = 8). The method developed in-house used QIAzol lysis reagent (Qiagen) to extract RNA from saliva (both cell-free supernatants and cell pellets), followed by isopropyl alcohol precipitation, cDNA synthesis, and real-time PCR analyses for the genes encoding beta-actin ("housekeeping" gene) and histatin (a salivary gland-specific gene). RESULTS: The in-house QIAzol lysis reagent produced a high yield of total RNA (0.89 -7.1 mu g) from saliva (cell-free saliva and cell pellet) after DNase treatment. The ratio of the absorbance measured at 260 nm to that at 280 nm ranged from 1.6 to 1.9. The commercial kit produced a 10-fold lower RNA yield. Using our method with the QIAzol lysis reagent, we were also able to isolate RNA from archived saliva samples that had been stored without RNase inhibitors at -80 degrees C for >2 years. CONCLUSIONS: Our in-house QIAzol method is robust, is simple, provides RNA at high yields, and can be implemented to allow saliva transcriptomic studies to be translated into a clinical setting.
Resumo:
Human saliva harbours proteins of clinical relevance and about 30% of blood proteins are also present in saliva. This highlights that saliva can be used for clinical applications just as urine or blood. However, the translation of salivary biomarker discoveries into clinical settings is hampered by the dynamics and complexity of the salivary proteome. This review focuses on the current status of technological developments and achievements relating to approaches for unravelling the human salivary proteome. We discuss the dynamics of the salivary proteome, as well as the importance of sample preparation and processing techniques and their influence on downstream protein applications; post-translational modifications of salivary proteome and protein: protein interactions. In addition, we describe possible enrichment strategies for discerning post-translational modifications of salivary proteins, the potential utility of selected-reaction-monitoring techniques for biomarker discovery and validation, limitations to proteomics and the biomarker challenge and future perspectives. In summary, we provide recommendations for practical saliva sampling, processing and storage conditions to increase the quality of future studies in an emerging field of saliva clinical proteomics. We propose that the advent of technologies allowing sensitive and high throughput proteome-wide analyses, coupled to well-controlled study design, will allow saliva to enter clinical practice as an alternative to blood-based methods due to its simplistic nature of sampling, non-invasiveness, easy of collection and multiple collections by untrained professionals and cost-effective advantages.
Resumo:
Background: Plasma D-dimer tests are currently used to exclude deep vein thrombosis and pulmonary embolism. Human saliva has numerous advantages over blood as a diagnostic sample. The aims of our study were to develop a reliable immunoassay to detect D-dimer levels in saliva, and to determine the correlation between salivary and blood D-dimer levels. Results/methodology: Saliva and blood samples were collected from 40 healthy volunteers. We developed a AlphaLISA((R)) immunoassay with acceptable analytical performances to quantify D-dimer levels in the samples. The median salivary D-dimer levels were 138.1 ng/ml (morning) and 140.7 ng/ml (afternoon), and the plasma levels were 75.0 ng/ml. Salivary D-dimer levels did not correlate with plasma levels (p = 0.61). Conclusion: For the first time, we have quantified D-dimer levels and found twofold increase in saliva (p < 0.05) than in plasma. Further studies are required to demonstrate the clinical relevance/utility of salivary D-dimer in patients with confirmed deep vein thrombosis and/or pulmonary embolism.
Resumo:
Background: Dysregulation of salivary immunoglobulins has been implicated in illnesses ranging from periodontal disease to HIV aids and malignant cancers. Despite these advances there is a lack of agreement among studies with regard to the salivary immunoglobulin levels in healthy controls. Methodology: Resting and mechanically stimulated saliva samples and matching serum samples were collected from healthy individuals (n = 33; 40-55 years of age; gender: 23 female, 10 male). A matrix-matched AlphaLISA((R)) assay was developed to determine the concentrations of IgG1 and IgG4 in serum and saliva samples. Conclusion: Clear relationships were observed in the flow rate and concentration of each immunoglobulin in the two types of saliva. This study affirms the need to establish and standardize collection methods before salivary IgGs are used for diagnostic purposes.
Resumo:
Background MicroRNAs (miRNAs) are known to play an important role in cancer development by post-transcriptionally affecting the expression of critical genes. The aims of this study were two-fold: (i) to develop a robust method to isolate miRNAs from small volumes of saliva and (ii) to develop a panel of saliva-based diagnostic biomarkers for the detection of head and neck squamous cell carcinoma (HNSCC). Methods Five differentially expressed miRNAs were selected from miScript™ miRNA microarray data generated using saliva from five HNSCC patients and five healthy controls. Their differential expression was subsequently confirmed by RT-qPCR using saliva samples from healthy controls (n = 56) and HNSCC patients (n = 56). These samples were divided into two different cohorts, i.e., a first confirmatory cohort (n = 21) and a second independent validation cohort (n = 35), to narrow down the miRNA diagnostic panel to three miRNAs: miR-9, miR-134 and miR-191. This diagnostic panel was independently validated using HNSCC miRNA expression data from The Cancer Genome Atlas (TCGA), encompassing 334 tumours and 39 adjacent normal tissues. Receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic capacity of the panel. Results On average 60 ng/μL miRNA was isolated from 200 μL of saliva. Overall a good correlation was observed between the microarray data and the RT-qPCR data. We found that miR-9 (P <0.0001), miR-134 (P <0.0001) and miR-191 (P <0.001) were differentially expressed between saliva from HNSCC patients and healthy controls, and that these miRNAs provided a good discriminative capacity with area under the curve (AUC) values of 0.85 (P <0.0001), 0.74 (P < 0.001) and 0.98 (P < 0.0001), respectively. In addition, we found that the salivary miRNA data showed a good correlation with the TCGA miRNA data, thereby providing an independent validation. Conclusions We show that we have developed a reliable method to isolate miRNAs from small volumes of saliva, and that the saliva-derived miRNAs miR-9, miR-134 and miR-191 may serve as novel biomarkers to reliably detect HNSCC. © 2014 International Society for Cellular Oncology.
Resumo:
Introduction We have previously shown that the concentrations of D-dimer are significantly elevated in saliva compared with plasma. Saliva offers several advantages compared with blood analysis. We hypothesised that human saliva contains plasminogen activator inhibitor-1 (PAI-1) and that the concentrations are not affected by the time of saliva collection. The aim was to adopt and validate an immunoassay to quantify PAI-1 concentrations in saliva and to determine whether saliva collection time has an influence in the measurement. Materials and methods Two saliva samples (morning and afternoon) from the same day were collected from healthy subjects (N = 40) who have had no underlying heart conditions. A customized AlphaLISA® immunoassay (PerkinElmer®, MA, USA) was adopted and used to quantify PAI-1 concentrations. We validated the analytical performance of the customized immunoassay by calculating recovery of known amount of analyte spiked in saliva. Results: The recovery (95.03%), intra- (8.59%) and inter-assay (7.52%) variations were within the acceptable ranges. The median salivary PAI-1 concentrations were 394 pg/mL (interquartile ranges (IQR) 243.4-833.1 pg/mL) in the morning and 376 (129.1-615.4) pg/mL in the afternoon and the plasma concentration was 59,000 (24,000-110,000) pg/mL. Salivary PAI-1 did not correlate with plasma (P = 0.812). Conclusions The adopted immunoassay produced acceptable assay sensitivity and specificity. The data demonstrated that saliva contains PAI-1 and that its concentration is not affected by the time of saliva collection. There is no correlation between salivary and plasma PAI-1 concentrations. Further studies are required to demonstrate the utility of salivary PAI-1 in CVD risk factor studies.
Resumo:
This study investigated the effects of high-intensity interval training (HIIT) vs. work-matched moderate-intensity continuous exercise (MOD) on metabolism and counterregulatory stress hormones. In a randomized and counterbalanced order, 10 well-trained male cyclists and triathletes completed a HIIT session [81.6 ± 3.7% maximum oxygen consumption (V̇o2 max); 72.0 ± 3.2% peak power output; 792 ± 95 kJ] and a MOD session (66.7 ± 3.5% V̇o2 max; 48.5 ± 3.1% peak power output; 797 ± 95 kJ). Blood samples were collected before, immediately after, and 1 and 2 h postexercise. Carbohydrate oxidation was higher (P = 0.037; 20%), whereas fat oxidation was lower (P = 0.037; −47%) during HIIT vs. MOD. Immediately after exercise, plasma glucose (P = 0.024; 20%) and lactate (P < 0.01; 5.4×) were higher in HIIT vs. MOD, whereas total serum free fatty acid concentration was not significantly different (P = 0.33). Targeted gas chromatography-mass spectromtery metabolomics analysis identified and quantified 49 metabolites in plasma, among which 11 changed after both HIIT and MOD, 13 changed only after HIIT, and 5 changed only after MOD. Notable changes included substantial increases in tricarboxylic acid intermediates and monounsaturated fatty acids after HIIT and marked decreases in amino acids during recovery from both trials. Plasma adrenocorticotrophic hormone (P = 0.019), cortisol (P < 0.01), and growth hormone (P < 0.01) were all higher immediately after HIIT. Plasma norepinephrine (P = 0.11) and interleukin-6 (P = 0.20) immediately after exercise were not significantly different between trials. Plasma insulin decreased during recovery from both HIIT and MOD (P < 0.01). These data indicate distinct differences in specific metabolites and counterregulatory hormones following HIIT vs. MOD and highlight the value of targeted metabolomic analysis to provide more detailed insights into the metabolic demands of exercise.
Resumo:
As the key neuron-to-neuron interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. However, the signal transduction mechanisms by which stress mediates its lasting effects on synapse transmission and on memory are not fully understood. A key component of the stress response is the increased secretion of adrenal steroids. Adrenal steroids (e.g., cortisol) bind to genomic mineralocorticoid and glucocorticoid receptors (gMRs and gGRs) in the cytosol. In addition, they may act through membrane receptors (mMRs and mGRs), and signal transduction through these receptors may allow for rapid modulation of synaptic transmission as well as modulation of membrane ion currents. mMRs increase synaptic and neuronal excitability; mechanisms include the facilitation of glutamate release through extracellular signal-regulated kinase signal transduction. In contrast, mGRs decrease synaptic and neuronal excitability by reducing calcium currents through N-methyl-D-aspartate receptors and voltage-gated calcium channels by way of protein kinase A- and G protein-dependent mechanisms. This body of functional data complements anatomical evidence localizing GRs to the postsynaptic membrane. Finally, accumulating data also suggest the possibility that mMRs and mGRs may show an inverted U-shaped dose response, whereby glutamatergic synaptic transmission is increased by low doses of corticosterone acting at mMRs and decreased by higher doses acting at mGRs. Thus, synaptic transmission is regulated by mMRs and mGRs, and part of the stress signaling response is a direct and bidirectional modulation of the synapse itself by adrenal steroids.
Resumo:
Oral diseases, or stomatognathic diseases, denote the diseases of the mouth (“stoma”) and jaw (“gnath”). Dental caries and periodontal diseases have been traditionally considered as the most important global oral health burdens. It is important to note that in oral diagnostics, the greatest challenges are determining the clinical utility of potential biomarkers for screening (in asymptomatic people), predicting the early onset of disease (prognostic tests), and evaluating the disease activity and the efficacy of therapy through innovative diagnostic tests. An oral diagnostic test, in principle, should provide valuable information for differential diagnosis, localization of disease, and severity of infection. This information can then be incorporated by the physician when planning treatments and will provide means for assessing the effectiveness of therapy.
Resumo:
Stress and abnormal hypothalamic-pituitary-adrenal axis functioning have been implicated in the early phase of psychosis and may partly explain reported changes in brain structure. This study used magnetic resonance imaging to investigate whether biological measures of stress were related to brain structure at baseline and to structural changes over the first 12 weeks of treatment in first episode patients (n=22) compared with matched healthy controls (n=22). At baseline, no significant group differences in biological measures of stress, cortical thickness or hippocampal volume were observed, but a significantly stronger relationship between baseline levels of cortisol and smaller white matter volumes of the cuneus and anterior cingulate was found in patients compared with controls. Over the first 12 weeks of treatment, patients showed a significant reduction in thickness of the posterior cingulate compared with controls. Patients also showed a significant positive relationship between baseline cortisol and increases in hippocampal volume over time, suggestive of brain swelling in association with psychotic exacerbation, while no such relationship was observed in controls. The current findings provide some support for the involvement of stress mechanisms in the pathophysiology of early psychosis, but the changes are subtle and warrant further investigation.
Resumo:
Objective: The aim of the present pilot study was to examine the effectiveness of a relaxation massage therapy programme in reducing stress, anxiety and aggression on a young adult psychiatric inpatient unit. Method: This was a prospective, non-randomized intervention study comparing treatment as usual (TAU) with TAU plus massage therapy intervention (MT) over consecutive 7 week blocks (May–August 2006). MT consisted of a 20 min massage therapy session offered daily to patients during their period of hospitalization. The Kennedy Nurses’ Observational Scale for Inpatient Evaluation (NOSIE), the Symptom Checklist-90–Revised (SCL-90-R), the State–Trait Anxiety Inventory (STAI) and stress hormone (saliva cortisol) levels were used to measure patient outcomes at admission and discharge from the unit. The Staff Observation Aggression Scale–Revised (SOAS-R) was used to monitor the frequency and severity of aggressive incidents on the unit. Results: There was a significant reduction in self-reported anxiety (p < 0.001), resting heart rate (p < 0.05) and cortisol levels (p < 0.05) immediately following the initial and final massage therapy sessions. Significant improvements in hostility (p = 0.007) and depression scores (p < 0.001) on the SCL-90-R were observed in both treatment groups. There was no group×time interaction on any of the measures. Poor reliability of staff-reported incidents on the SOAS-R limited the validity of results in this domain. Conclusions: Massage therapy had immediate beneficial effects on anxiety-related measures and may be a useful de-escalating tool for reducing stress and anxiety in acutely hospitalized psychiatric patients. Study limitations preclude any definite conclusions on the effect of massage therapy on aggressive incidents in an acute psychiatric setting. Randomized controlled trials are warranted.
Resumo:
Ultra-endurance exercise, such as an Ironman triathlon, induces muscle damage and a systemic inflammatory response. As the resolution of recovery in these parameters is poorly documented, we investigated indices of muscle damage and systemic inflammation in response to an Ironman triathlon and monitored these parameters 19 days into recovery. Blood was sampled from 42 well-trained male triathletes 2 days before, immediately after, and 1, 5 and 19 days after an Ironman triathlon. Blood samples were analyzed for hematological profile, and plasma values of myeloperoxidase (MPO), polymorphonuclear (PMN) elastase, cortisol, testosterone, creatine kinase (CK) activity, myoglobin, interleukin (IL)-6, IL-10 and high-sensitive C-reactive protein (hs-CRP). Immediately post-race there were significant (P < 0.001) increases in total leukocyte counts, MPO, PMN elastase, cortisol, CK activity, myoglobin, IL-6, IL-10 and hs-CRP, while testosterone significantly (P < 0.001) decreased compared to prerace. With the exception of cortisol, which decreased below prerace values (P < 0.001), these alterations persisted 1 day post-race (P < 0.001; P < 0.01 for IL-10). Five days post-race CK activity, myoglobin, IL-6 and hs-CRP had decreased, but were still significantly (P < 0.001) elevated. Nineteen days post-race most parameters had returned to prerace values, except for MPO and PMN elastase, which had both significantly (P < 0.001) decreased below prerace concentrations, and myoglobin and hs-CRP, which were slightly, but significantly higher than prerace. Furthermore, significant relationships between leukocyte dynamics, cortisol, markers of muscle damage, cytokines and hs-CRP after the Ironman triathlon were noted. This study indicates that the pronounced initial systemic inflammatory response induced by an Ironman triathlon declines rapidly. However, a low-grade systemic inflammation persisted until at least 5 days post-race, possibly reflecting incomplete muscle recovery.
Resumo:
This project is a step towards assessing the effects of climate change on the tra catfish industry in Vietnam. The methods were designed to evaluate possible effects of salinity and temperature increase and their interaction on fish physiological parameters, growth performance, survival and the expression of stress related genes. Results indicated that tra had higher overall performance at 35oC with 6ppt salinity and therefore should cope with moderate predicted outcomes of climate change for the region. The experiments were mostly conducted in the Mekong Delta, Vietnam - the centre of the tra catfish industry with the cooperation of Can Tho University – Can Tho City – Vietnam.
Resumo:
PURPOSE: This study investigated the significance of baseline cortisol levels and adrenal response to corticotropin in shocked patients after acute myocardial infarction (AMI). METHODS: A short corticotropin stimulation test was performed in 35 patients with cardiogenic shock after AMI by intravenously injecting of 250 μg of tetracosactrin (Synacthen). Blood samples were obtained at baseline (T0) before and at 30 (T30) and 60 (T60) minutes after the test to determine plasma total cortisol (TC) and free cortisol concentrations. The main outcome measure was in-hospital mortality and its association with T0 TC and maximum response to corticotropin (maximum difference [Δ max] in cortisol levels between T0 and the highest value between T30 and T60). RESULTS: The in-hospital mortality was 37%, and the median time to death was 4 days (interquartile range, 3-9 days). There was some evidence of an increased mortality in patients with T0 TC concentrations greater than 34 μg/dL (P=.07). Maximum difference by itself was not an independent predictor of death. Patients with a T0 TC 34 μg/dL or less and Δ max greater than 9 μg/dL appeared to have the most favorable survival (91%) when compared with the other 2 groups: T0 34 μg/dL or less and Δ max 9 μg/dL or less or T0 34 μg/dL or higher and Δ max greater than 9 μg/dL (75%; P=.8) and T0 greater than 34 μg/dL and Δ max 9 μg/dL or less (60%; P=.02). Corticosteroid therapy was associated with an increased mortality (P=.03). There was a strong correlation between plasma TC and free cortisol (r=0.85). CONCLUSIONS: A high baseline plasma TC was associated with a trend toward increased mortality in patients with cardiogenic shock post-AMI. Patients with lower baseline TC, but with an inducible adrenal response, appeared to have a survival benefit. A prognostic system based on basal TC and Δ max similar to that described in septic shock appears feasible in this cohort. Corticosteroid therapy was associated with adverse outcomes. These findings require further validation in larger studies.
Resumo:
There is strong evidence to suggest that the combination of alcohol and chronic repetitive stress leads to long-lasting effects on brain function, specifically areas associated with stress, motivation and decision-making such as the amygdala, nucleus accumbens and prefrontal cortex. Alcohol and stress together facilitate the imprinting of long-lasting memories. The molecular mechanisms and circuits involved are being studied but are not fully understood. Current evidence suggests that corticosterone (animals) or cortisol (humans), in addition to direct transcriptional effects on the genome, can directly regulate pre- and postsynaptic synaptic transmission through membrane bound glucocorticoid receptors (GR). Indeed, corticosterone-sensitive synaptic receptors may be critical sites for stress regulation of synaptic responses. Direct modulation of synaptic transmission by corticosterone may contribute to the regulation of synaptic plasticity and memory during stress (Johnson et al., 2005; Prager et al., 2010). Specifically, previous data has shown that long term alcohol (1) increases the expression of NR2Bcontaining NMDA receptors at glutamate synapses, (2) changes receptor density, and (3) changes morphology of dendritic spines (Prendergast and Mulholland; 2012). During alcohol withdrawal these changes are associated with increased glucocorticoid signalling and increased neuronal excitability. It has therefore been proposed that these synapse changes lead to the anxiety and alcohol craving associated with withdrawal (Prendergast and Mulholland; 2012). My lab is targeting this receptor system and the amygdala in order to understand the effect of combining alcohol and stress on these pathways. Lastly, we are testing GR specific compounds as potential new medications to promote the development of resilience to developing addiction.