986 resultados para richness estimator
Resumo:
A graphical processing unit (GPU) is a hardware device normally used to manipulate computer memory for the display of images. GPU computing is the practice of using a GPU device for scientific or general purpose computations that are not necessarily related to the display of images. Many problems in econometrics have a structure that allows for successful use of GPU computing. We explore two examples. The first is simple: repeated evaluation of a likelihood function at different parameter values. The second is a more complicated estimator that involves simulation and nonparametric fitting. We find speedups from 1.5 up to 55.4 times, compared to computations done on a single CPU core. These speedups can be obtained with very little expense, energy consumption, and time dedicated to system maintenance, compared to equivalent performance solutions using CPUs. Code for the examples is provided.
Resumo:
SummaryDiscrete data arise in various research fields, typically when the observations are count data.I propose a robust and efficient parametric procedure for estimation of discrete distributions. The estimation is done in two phases. First, a very robust, but possibly inefficient, estimate of the model parameters is computed and used to indentify outliers. Then the outliers are either removed from the sample or given low weights, and a weighted maximum likelihood estimate (WML) is computed.The weights are determined via an adaptive process such that if the data follow the model, then asymptotically no observation is downweighted.I prove that the final estimator inherits the breakdown point of the initial one, and that its influence function at the model is the same as the influence function of the maximum likelihood estimator, which strongly suggests that it is asymptotically fully efficient.The initial estimator is a minimum disparity estimator (MDE). MDEs can be shown to have full asymptotic efficiency, and some MDEs have very high breakdown points and very low bias under contamination. Several initial estimators are considered, and the performances of the WMLs based on each of them are studied.It results that in a great variety of situations the WML substantially improves the initial estimator, both in terms of finite sample mean square error and in terms of bias under contamination. Besides, the performances of the WML are rather stable under a change of the MDE even if the MDEs have very different behaviors.Two examples of application of the WML to real data are considered. In both of them, the necessity for a robust estimator is clear: the maximum likelihood estimator is badly corrupted by the presence of a few outliers.This procedure is particularly natural in the discrete distribution setting, but could be extended to the continuous case, for which a possible procedure is sketched.RésuméLes données discrètes sont présentes dans différents domaines de recherche, en particulier lorsque les observations sont des comptages.Je propose une méthode paramétrique robuste et efficace pour l'estimation de distributions discrètes. L'estimation est faite en deux phases. Tout d'abord, un estimateur très robuste des paramètres du modèle est calculé, et utilisé pour la détection des données aberrantes (outliers). Cet estimateur n'est pas nécessairement efficace. Ensuite, soit les outliers sont retirés de l'échantillon, soit des faibles poids leur sont attribués, et un estimateur du maximum de vraisemblance pondéré (WML) est calculé.Les poids sont déterminés via un processus adaptif, tel qu'asymptotiquement, si les données suivent le modèle, aucune observation n'est dépondérée.Je prouve que le point de rupture de l'estimateur final est au moins aussi élevé que celui de l'estimateur initial, et que sa fonction d'influence au modèle est la même que celle du maximum de vraisemblance, ce qui suggère que cet estimateur est pleinement efficace asymptotiquement.L'estimateur initial est un estimateur de disparité minimale (MDE). Les MDE sont asymptotiquement pleinement efficaces, et certains d'entre eux ont un point de rupture très élevé et un très faible biais sous contamination. J'étudie les performances du WML basé sur différents MDEs.Le résultat est que dans une grande variété de situations le WML améliore largement les performances de l'estimateur initial, autant en terme du carré moyen de l'erreur que du biais sous contamination. De plus, les performances du WML restent assez stables lorsqu'on change l'estimateur initial, même si les différents MDEs ont des comportements très différents.Je considère deux exemples d'application du WML à des données réelles, où la nécessité d'un estimateur robuste est manifeste : l'estimateur du maximum de vraisemblance est fortement corrompu par la présence de quelques outliers.La méthode proposée est particulièrement naturelle dans le cadre des distributions discrètes, mais pourrait être étendue au cas continu.
Resumo:
The richness of plant species in Swiss alpine-nival summits increased during the climate warming of the 20th century. Thirty-seven summits (2797-3418 m a.s.l.) with both old (~1900-1920) and recent (~2000) plant inventories were used to test whether biological species traits can explain the observed rates of summit colonisation. Species were classified into two groups: good colonisers (colonising five or more summits) and weak colonisers (fewer than five new summits). We compared species traits related to growth, reproduction and dispersal between these two groups and between the good colonisers and a group of high alpine grassland species. The observed colonisation pattern was subsequently compared to a simulated random colonisation pattern. The distribution of new species on the summits was not random, and 16 species exhibited a colonisation rate higher than expected by chance. Taraxacum alpinum aggr. and Cardamine resedifolia were the best colonisers. Results showed that diaspore traits enhancing long-distance dispersal were more frequent among good colonisers than among weak colonisers. Good colonisers were mostly characterised by pappi or narrow wings on their diaspores. Both groups were able to grow on soils more bare and rocky than species from the alpine grasslands. All other biological traits that we considered were similar among the three alpine species groups. These results are important for improving predictive models of species distribution under climate change
Resumo:
1. Severe environmental conditions filter community species compositions, forming clines of functional diversity along environmental gradients. Here, the changes in functional diversity in ant assemblages with severe environmental conditions in the Swiss Alps were investigated. 2. Eight sites were sampled along an elevation gradient (1800-2550 m). The variation in functional diversity was analysed along an elevation gradient considering four traits: social structure (monogynous vs. polygynous), worker size, pupal development, and nest structure. 3. Ant species richness and functional diversity decreased with decreasing temperature. Species found in colder habitats tended to live in subterranean nests rather than in mounds and exhibit a polymorphism in queen number, either within or across populations. The phylogenetic diversity did not decrease at colder temperature: Formicinae and Myrmicinae occupied the full range of elevations investigated. 4. An insulation experiment indicated that mounds are more thermally insulated against the cold compared with soil. The absence of a mound-building ant from high elevations probably results from a reduction in the amount of vegetal materials provided by coniferous trees. 5. More severe abiotic conditions at higher elevations act as a filter on ant assemblages, directly through physiological tolerances to the abiotic conditions and indirectly as the vegetation necessary for nest building shifts with elevation.</list-item
Resumo:
This study investigated the small mammal community of the periurban Banco National Park (34 km(2)), Abidjan, Cote d'Ivoire, using identical numbers of Sherman and Longworth traps. We aimed to determine the diversity and distribution of rodents and shrews in three different habitats: primary forest, secondary forest and swamp. Using 5014 trap-nights, 91 individuals were captured that comprised seven rodent and four shrew species. The trapping success was significantly different for each species, i.e., the Longworth traps captured more soricids (31/36 shrews), whereas the Sherman traps captured more murids (37/55 mice). The most frequent species was Praomys cf. rostratus, followed by Crocidura buettikoferi, Hybomys trivirgatus and Crocidura jouvenetae. Indices of species richness (S) and diversity (H') were greatest in primary forest, followed by secondary forest and swamp. - Several expected species, such as Crocidura obscurior, were not found, whereas we captured four specimens of the critically endangered (IUCN 2012) Wimmer's shrew Crocidura wimmeri, a species that has vanished from its type locality, Adiopodoume. Therefore, Banco National Park represents an important sanctuary, not only for plants, birds and primates, but also for other small forest vertebrates.
Evolutionary history and its relevance in understanding and conserving southern African biodiversity
Resumo:
Abstract : Understanding how biodiversity is distributed is central to any conservation effort and has traditionally been based on niche modeling and the causal relationship between spatial distribution of organisms and their environment. More recently, the study of species' evolutionary history and relatedness has permeated the fields of ecology and conservation and, coupled with spatial predictions, provides useful insights to the origin of current biodiversity patterns, community structuring and potential vulnerability to extinction. This thesis explores several key ecological questions by combining the fields of niche modeling and phylogenetics and using important components of southern African biodiversity. The aims of this thesis are to provide comparisons of biodiversity measures, to assess how climate change will affect evolutionary history loss, to ask whether there is a clear link between evolutionary history and morphology and to investigate the potential role of relatedness in macro-climatic niche structuring. The first part of my thesis provides a fine scale comparison and spatial overlap quantification of species richness and phylogenetic diversity predictions for one of the most diverse plant families in the Cape Floristic Region (CFR), the Proteaceae. In several of the measures used, patterns do not match sufficiently to argue that species relatedness information is implicit in species richness patterns. The second part of my thesis predicts how climate change may affect threat and potential extinction of southern African animal and plant taxa. I compare present and future niche models to assess whether predicted species extinction will result in higher or lower V phylogenetic diversity survival than what would be experienced under random extinction processes. l find that predicted extinction will result in lower phylogenetic diversity survival but that this non-random pattern will be detected only after a substantial proportion of the taxa in each group has been lost. The third part of my thesis explores the relationship between phylogenetic and morphological distance in southern African bats to assess whether long evolutionary histories correspond to equally high levels of morphological variation, as predicted by a neutral model of character evolution. I find no such evidence; on the contrary weak negative trends are detected for this group, as well as in simulations of both neutral and convergent character evolution. Finally, I ask whether spatial and climatic niche occupancy in southern African bats is influenced by evolutionary history or not. I relate divergence time between species pairs to climatic niche and range overlap and find no evidence for clear phylogenetic structuring. I argue that this may be due to particularly high levels of micro-niche partitioning. Résumé : Comprendre la distribution de la biodiversité représente un enjeu majeur pour la conservation de la nature. Les analyses se basent le plus souvent sur la modélisation de la niche écologique à travers l'étude des relations causales entre la distribution spatiale des organismes et leur environnement. Depuis peu, l'étude de l'histoire évolutive des organismes est également utilisée dans les domaines de l'écologie et de la conservation. En combinaison avec la modélisation de la distribution spatiale des organismes, cette nouvelle approche fournit des informations pertinentes pour mieux comprendre l'origine des patterns de biodiversité actuels, de la structuration des communautés et des risques potentiels d'extinction. Cette thèse explore plusieurs grandes questions écologiques, en combinant les domaines de la modélisation de la niche et de la phylogénétique. Elle s'applique aux composants importants de la biodiversité de l'Afrique australe. Les objectifs de cette thèse ont été l) de comparer différentes mesures de la biodiversité, 2) d'évaluer l'impact des changements climatiques à venir sur la perte de diversité phylogénétique, 3) d'analyser le lien potentiel entre diversité phylogénétique et diversité morphologique et 4) d'étudier le rôle potentiel de la phylogénie sur la structuration des niches macro-climatiques des espèces. La première partie de cette thèse fournit une comparaison spatiale, et une quantification du chevauchement, entre des prévisions de richesse spécifique et des prédictions de la diversité phylogénétique pour l'une des familles de plantes les plus riches en espèces de la région floristique du Cap (CFR), les Proteaceae. Il résulte des analyses que plusieurs mesures de diversité phylogénétique montraient des distributions spatiales différentes de la richesse spécifique, habituellement utilisée pour édicter des mesures de conservation. La deuxième partie évalue les effets potentiels des changements climatiques attendus sur les taux d'extinction d'animaux et de plantes de l'Afrique australe. Pour cela, des modèles de distribution d'espèces actuels et futurs ont permis de déterminer si l'extinction des espèces se traduira par une plus grande ou une plus petite perte de diversité phylogénétique en comparaison à un processus d'extinction aléatoire. Les résultats ont effectivement montré que l'extinction des espèces liées aux changements climatiques pourrait entraîner une perte plus grande de diversité phylogénétique. Cependant, cette perte ne serait plus grande que celle liée à un processus d'extinction aléatoire qu'à partir d'une forte perte de taxons dans chaque groupe. La troisième partie de cette thèse explore la relation entre distances phylogénétiques et morphologiques d'espèces de chauves-souris de l'Afrique australe. ll s'agit plus précisément de déterminer si une longue histoire évolutive correspond également à des variations morphologiques plus grandes dans ce groupe. Cette relation est en fait prédite par un modèle neutre d'évolution de caractères. Aucune évidence de cette relation n'a émergé des analyses. Au contraire, des tendances négatives ont été détectées, ce qui représenterait la conséquence d'une évolution convergente entre clades et des niveaux élevés de cloisonnement pour chaque clade. Enfin, la dernière partie présente une étude sur la répartition de la niche climatique des chauves-souris de l'Afrique australe. Dans cette étude je rapporte temps de divergence évolutive (ou deux espèces ont divergé depuis un ancêtre commun) au niveau de chevauchement de leurs niches climatiques. Les résultats n'ont pas pu mettre en évidence de lien entre ces deux paramètres. Les résultats soutiennent plutôt l'idée que cela pourrait être I dû à des niveaux particulièrement élevés de répartition de la niche à échelle fine.
Resumo:
A traditional photonic-force microscope (PFM) results in huge sets of data, which requires tedious numerical analysis. In this paper, we propose instead an analog signal processor to attain real-time capabilities while retaining the richness of the traditional PFM data. Our system is devoted to intracellular measurements and is fully interactive through the use of a haptic joystick. Using our specialized analog hardware along with a dedicated algorithm, we can extract the full 3D stiffness matrix of the optical trap in real time, including the off-diagonal cross-terms. Our system is also capable of simultaneously recording data for subsequent offline analysis. This allows us to check that a good correlation exists between the classical analysis of stiffness and our real-time measurements. We monitor the PFM beads using an optical microscope. The force-feedback mechanism of the haptic joystick helps us in interactively guiding the bead inside living cells and collecting information from its (possibly anisotropic) environment. The instantaneous stiffness measurements are also displayed in real time on a graphical user interface. The whole system has been built and is operational; here we present early results that confirm the consistency of the real-time measurements with offline computations.
Resumo:
This paper investigates a simple procedure to estimate robustly the mean of an asymmetric distribution. The procedure removes the observations which are larger or smaller than certain limits and takes the arithmetic mean of the remaining observations, the limits being determined with the help of a parametric model, e.g., the Gamma, the Weibull or the Lognormal distribution. The breakdown point, the influence function, the (asymptotic) variance, and the contamination bias of this estimator are explored and compared numerically with those of competing estimates.
Resumo:
Introduction: The interhemispheric asymmetries that originate from connectivity-related structuring of the cerebral cortex are compromised in schizophrenia (SZ). Recently, we have revealed the whole-head topography of EEG synchronization in SZ (Jalili et al. 2007; Knyazeva et al. 2008). Here we extended the analysis to assess the abnormality in the asymmetry of synchronization, which is further motivated by the evidence that the interhemispheric asymmetries suspected to be abnormal in SZ originate from the connectivity-related structuring of the cortex. Methods: Thirteen right-handed SZ patients and thirteen matched controls, participated in this study and the multichannel (128) EEGs were recorded for 3-5 minutes at rest. Then, Laplacian EEG (LEEG) were calculated using a 2-D spline. The LEEGs were analysis through calculating the power spectral density using Welch's average periodogram method. Furthermore, using a state-space based multivariate synchronization measure, S-estimator, we analyzed the correlate of the functional cortico-cortical connectivity in SZ patients compared to the controls. The values of S-estimator were obtained at three different special scales: first-order neighbors for each sensor location, second-order neighbors, and the whole hemisphere. The synchronization measures based on LEEG of alpha and beta bands were applied and tuned to various spatial scales including local, intraregional, and long-distance levels. To assess the between-group differences, we used a permutation version of Hotelling's T2 test. For correlation analysis, Spearman Rank Correlation was calculated. Results: Compared to the controls, who had rightward asymmetry at a local level (LEEG power), rightward anterior and leftward posterior asymmetries at an intraregional level (first- and second-order S-estimator), and rightward global asymmetry (hemispheric S-estimator), SZ patients showed generally attenuated asymmetry, the effect being strongest for intraregional synchronization. This deviation in asymmetry across the anterior-to-posterior axis is consistent with the cerebral form of the so-called Yakovlevian or anticlockwise cerebral torque. Moreover, the negative occipital and positive frontal asymmetry values suggest higher regional synchronization among the left occipital and the right frontal locations relative to their symmetrical counterparts. Correlation analysis linked the posterior intraregional and hemispheric abnormalities to the negative SZ symptoms, whereas the asymmetry of LEEG power appeared to be weakly coupled to clinical ratings. The posterior intraregional abnormalities of asymmetry were shown to increase with the duration of the disease. The tentative links between these findings and gross anatomical asymmetries, including the cerebral torque and gyrification pattern in normal subjects and SZ patients, are discussed. Conclusions: Overall, our findings reveal the abnormalities in the synchronization asymmetry in SZ patients and heavy involvement of the right hemisphere in these abnormalities. These results indicate that anomalous asymmetry of cortico-cortical connections in schizophrenia is amenable to electrophysiological analysis.
Resumo:
Wireless “MIMO” systems, employing multiple transmit and receive antennas, promise a significant increase of channel capacity, while orthogonal frequency-division multiplexing (OFDM) is attracting a good deal of attention due to its robustness to multipath fading. Thus, the combination of both techniques is an attractive proposition for radio transmission. The goal of this paper is the description and analysis of a new and novel pilot-aided estimator of multipath block-fading channels. Typical models leading to estimation algorithms assume the number of multipath components and delays to be constant (and often known), while their amplitudes are allowed to vary with time. Our estimator is focused instead on the more realistic assumption that the number of channel taps is also unknown and varies with time following a known probabilistic model. The estimation problem arising from these assumptions is solved using Random-Set Theory (RST), whereby one regards the multipath-channel response as a single set-valued random entity.Within this framework, Bayesian recursive equations determine the evolution with time of the channel estimator. Due to the lack of a closed form for the solution of Bayesian equations, a (Rao–Blackwellized) particle filter (RBPF) implementation ofthe channel estimator is advocated. Since the resulting estimator exhibits a complexity which grows exponentially with the number of multipath components, a simplified version is also introduced. Simulation results describing the performance of our channel estimator demonstrate its effectiveness.
Resumo:
In this paper, we introduce a pilot-aided multipath channel estimator for Multiple-Input Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems. Typical estimation algorithms assume the number of multipath components and delays to be known and constant, while theiramplitudes may vary in time. In this work, we focus on the more realistic assumption that also the number of channel taps is unknown and time-varying. The estimation problem arising from this assumption is solved using Random Set Theory (RST), which is a probability theory of finite sets. Due to the lack of a closed form of the optimal filter, a Rao-Blackwellized Particle Filter (RBPF) implementation of the channel estimator is derived. Simulation results demonstrate the estimator effectiveness.
Resumo:
This paper presents several algorithms for joint estimation of the target number and state in a time-varying scenario. Building on the results presented in [1], which considers estimation of the target number only, we assume that not only the target number, but also their state evolution must be estimated. In this context, we extend to this new scenario the Rao-Blackwellization procedure of [1] to compute Bayes recursions, thus defining reduced-complexity solutions for the multi-target set estimator. A performance assessmentis finally given both in terms of Circular Position Error Probability - aimed at evaluating the accuracy of the estimated track - and in terms of Cardinality Error Probability, aimed at evaluating the reliability of the target number estimates.
Resumo:
Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km(2) to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally, these data should be sampled to reflect variation in the underlying environment across large spatial extents, and at fine spatial resolution. Simplified ecosystems where there are relatively few interacting species and sometimes a wealth of existing ecosystem monitoring data (e.g. arctic, alpine or island habitats) offer settings where the development of modelling tools that account for biotic interactions may be less difficult than elsewhere.
Resumo:
We review the different meanings that researchers have given to theconcept of social capital, differentiate four types – bridging, bonding,linking, and overheads –, and discuss their different functions as public,club, and common goods.For each form of social capital we distinguish its productivity (acollective characteristic) from the factors that account for individual’sdifferential access to its returns, and propose alternative ways formeasuring each.We show the utility of our theoretical and measuring approach byanalyzing the impact of the each form of social capital on 15 year-oldstudents’ cognitive attainment across OECD countries, using 2006 PISAdata.The results show that students’ cognitive attainments are a direct functionof the richness or productivity of each form of social capital and ofstudents’ degree of access to each.