917 resultados para reversible diffeomorphisms
Resumo:
Bis-(µ2-oxo)-tetrakis{[1-feniltriazene-1,3-diil)-2-(phenyltriazenil)benzene copper(II) is a tetranuclear complex which shows four Cu(II) ions coordinated by four 1,2-bis(phenyltriazene)benzene bridged ligands, with one diazoaminic deprotonated chain, and two O2- ligands. The complex reduces at E1/2 = -0.95 V vs Fc+/Fc, a two electrons process. Cyclic voltammetric and spectroelectrochemical studies showed a reversible process. When immobilized on carbon paste electrode, the complex electrocatalyses the reduction of O2 dissolved on aqueous solution at -0.3 V vs SCE potential. The obtained current shows linearity with O2 concentration.
Resumo:
The currently used forms of cancer therapy are associated with drug resistance and toxicity to healthy tissues. Thus, more efficient methods are needed for cancer-specific induction of growth arrest and programmed cell death, also known as apoptosis. Therapeutic forms of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) are investigated in clinical trials due to the capability of TRAIL to trigger apoptosis specifically in cancer cells by activation of cell surface death receptors. Many tumors, however, have acquired resistance to TRAIL-induced apoptosis and sensitizing drugs for combinatorial treatments are, therefore, in high demand. This study demonstrates that lignans, natural polyphenols enriched in seeds and cereal, have a remarkable sensitizing effect on TRAIL-induced cell death at non-toxic lignan concentrations. In TRAIL-resistant and androgen-dependent prostate cancer cells we observe that lignans repress receptor tyrosine kinase (RTK) activity and downregulate cell survival signaling via the Akt pathway, which leads to increased TRAIL sensitivity. A structure-activity relationship analysis reveals that the γ-butyrolactone ring of the dibenzylbutyrolactone lignans is essential for the rapidly reversible TRAIL-sensitizing activity of these compounds. Furthermore, the lignan nortrachelogenin (NTG) is identified as the most efficient of the 27 tested lignans and norlignans in sensitization of androgen-deprived prostate cancer cells to TRAIL-induced apoptosis. While this combinatorial anticancer approach may leave normal cells unharmed, several efficient cancer drugs are too toxic, insoluble or unstable to be used in systemic therapy. To enable use of such drugs and to protect normal cells from cytotoxic effects, cancer-targeted drug delivery vehicles of nanometer scale have recently been generated. The newly developed nanoparticle system that we tested in vitro for cancer cell targeting combines the efficient drug-loading capacity of mesoporous silica to the versatile particle surface functionalization of hyperbranched poly(ethylene imine), PEI. The mesoporous hybrid silica nanoparticles (MSNs) were functionalized with folic acid to promote targeted internalization by folate receptor overexpressing cancer cells. The presented results demonstrate that the developed carrier system can be employed in vitro for cancer selective delivery of adsorbed or covalently conjugated molecules and furthermore, for selective induction of apoptotic cell death in folate receptor expressing cancer cells. The tested carrier system displays potential for simultaneous delivery of several anticancer agents specifically to cancer cells also in vivo.
Resumo:
Työssä tutkittiin polymeerisen ultrasuodatuskalvon modifiointimahdollisuuksia prosessiolosuhteita muuttamalla. Kalvon modifioimisella pyritään sen suodatusominaisuuksien muuttumiseen, joka voi lisätä kalvon käyttökohteita ja parantaa kalvon soveltuvuutta tiettyjen yhdisteiden suodatukseen. Hydrofiilisiä, tiukkoja polymeerisiä ultrasuodatuskalvoja on kaupallisesti saatavilla vähän, joten työssä tutkittiin niiden valmistusta modifioimalla markkinoilla olevaa, löysempää, hydrofiilistä, polymeeristä ultrasuodatuskalvoa. Ultrasuodatuskalvo modifioitiin paineen, lämpötilan ja emäksen avulla. Modifioinnin aiheuttamat muutokset voidaan jakaa pysyviin, osittain palautuviin tai palautuviin muutoksiin. Kalvon rakenteen muuttuessa pysyvästi voidaan kalvo modifioida ennen suodatuksen aloittamista. Tällöin modifioinnissa käytetyt olosuhteet eivät vaikuta suodatukseen kuten muissa tapauksissa. Modifioinnin vaikutusta kalvoon voidaan analysoida eri menetelmillä. Näitä ovat esimerkiksi elektronimikroskopia ja kalvon vuon tai retention analysointi. Mikroskooppikuvia ei voida ottaa suodatuksen aikana, vaan kalvosta saada tietoa ainoastaan alku- ja lopputilanteissa suodatusolosuhteista poistettuna. Vuon ja retention avulla saadaan reaaliaikaista tietoa modifioidun kalvon suodatuskapasiteetin ja erotuskyvyn muutoksista. Työssä modifioinnin vaikutusta seurattiin vuo- ja retentiomittausten avulla ja kalvon rakenteessa tapahtuvia muutoksia tutkittiin pyyhkäisyelektronimikroskooppikuvien ja mikrometrimittausten avulla. Korkeampaa painetta tai lämpötilaa käytettäessä havaittiin vuon alenevan modifioitaessa enemmän kuin matalammissa paineissa tai lämpötiloissa. Korkeampi puristuslämpötila kasvatti myös retentiota. Modifiointiolosuhteiden ollessa emäksisiä aleni permeabiliteetti neutraaleissa olosuhteissa tehtyä puristusta enemmän. Myös retentio aleni emäksen avulla tehdyssä modifioinnissa. Kalvon rakenteessa tapahtuneiden muutosten palautuminen riippui modifiointilämpötilasta, korkeassa lämpötilassa modifioidussa kalvossa palautumista ei tapahtunut. Modifioinnin aiheuttamat kalvojen paksuuden muutokset tukivat retentio- ja vuomittauksia. Pyyhkäisyelektronimikroskooppikuvista voitiin havaita kalvon huokosrakenteen puristuneen modifioinnin aikana.
Resumo:
Ipomoea sericophylla and Ipomoea riedelii cause a glycoprotein storage disease in goats. This paper reports the experimental poisoning in goats by dried I. sericophylla and I. riedelii containing 0.05% and 0.01% swainsonine, respectively. Three groups with four animals each were used. Group 1 received daily doses of 2g/kg body weight (bw) of dried I. sericophylla (150mg of swainsonine/kg). Goats from this group had clinical signs 36-38 days after the start of ingestion. Group 2 received dried I. riedelii daily doses of 2g/kg of I. riedelii (30mg of swainsonine/kg) for 70 days. No clinical signs were observed, therefore the swainsonine dose was increased to 60mg/kg for another 70 days. Goats from Group 2 had clinical signs 26-65 days after increase in swainsonine dose to 60mg/kg. Group 3 was used as control. In these experiments the minimum toxic dose was 60mg/kg which represents 0.0004% of the dry matter in goats ingesting 1.5% bw of the dry matter. For goats ingesting 2%-2.5% bw of dry matter this dose would be 0.00024%-0.0003% of the dry matter. After the end of the experiment two goats were euthanized and another six were observed for recovery of clinical signs. Four goats that continued to consume swainsonine containing plant for 39-89 days after the first clinical signs had non reversible signs, while two goats that ingested the plant for only 15 and 20 days after the first clinical signs recovered completely. These and previous results indicate that irreversible lesions due to neuronal loss occur in goats that continue to ingest the plants for about 30 days after the first clinical signs. Clinical signs and histological lesions were similar to those reported previously for goats poisoned by swainsonine containing plants. No significant alterations were found in packed cell volume, red and white blood cell counts, hemoglobin and mean corpuscular hemoglobin concentrations, mean corpuscular volume, and serum levels of glucose, total protein, and albumin, and the serum activities of gamma glutamyl transferase and aspartate aminotransferase. Swainsonine concentration of 0.05% in I. sericophylla and 0.01% in I. riedelii are different from samples of these plants used in previous experiments, which contained 0.14% and 0.5% swainsonine, respectively, demonstrating a wide variation in the toxicity of different samples.
Resumo:
Biogas production has considerable development possibilities not only in Finland but all over the world since it is the easiest way of creating value out of various waste fractions and represents an alternative source of renewable energy. Development of efficient biogas upgrading technology has become an important issue since it improves the quality of biogas and for example facilitating its injection into the natural gas pipelines. Moreover, such upgrading contributes to resolving the issue of increasing CO2 emissions and addresses the increasing climate change concerns. Together with traditional CO2 capturing technologies a new class of recently emerged sorbents such as ionic liquids is claimed as promising media for gas separations. In this thesis, an extensive comparison of the performance of different solvents in terms of CO2 capture has been performed. The focus of the present study was on aqueous amine solutions and their mixtures, traditional ionic liquids, ‘switchable’ ionic liquids and poly(ionic liquid)s in order to reveal the best option for biogas upgrading. The CO2 capturing efficiency for the most promising solvents achieved values around 50 - 60 L CO2 / L absorbent. These values are superior to currently widely applied water wash biogas upgrading system. Regeneration of the solvent mixtures appeared to be challenging since the loss of initial efficiency upon CO2 release was in excess of 20 - 40 vol %, especially in the case of aqueous amine solutions. In contrast, some of the ionic liquids displayed reversible behavior. Thus, for selected “switchable” ionic and poly(ionic liquid)s the CO2 absorption/regeneration cycles were performed 3 - 4 times without any notable efficiency decrease. The viscosity issue, typical for ionic liquids upon CO2 saturation, was addressed and the information obtained was evaluated and related to the ionic interactions. The occurrence of volatile organic compounds (VOCs) before and after biogas upgrading was studied for biogas produced through anaerobic digestion of waste waters sludge. The ionic liquid [C4mim][OAc] demonstrated its feasibility as a promising scrubbing media and exhibited high efficiency in terms of the removal of VOCs. Upon application of this ionic liquid, the amount of identified VOCs was diminished by around 65 wt %, while the samples treated with the aqueous mixture of 15 wt % N-methyldiethanolamine with addition of 5 wt % piperazine resulted in 32 wt % reduction in the amounts of volatile organic compounds only.
Resumo:
In this Thesis, we study various aspects of ring dark solitons (RDSs) in quasi-two-dimensional toroidally trapped Bose-Einstein condensates, focussing on atomic realisations thereof. Unlike the well-known planar dark solitons, exact analytic expressions for RDSs are not known. We address this problem by presenting exact localized soliton-like solutions to the radial Gross-Pitaevskii equation. To date, RDSs have not been experimentally observed in cold atomic gases, either. To this end, we propose two protocols for their creation in experiments. It is also currently well known that in dimensions higher than one, (ring) dark solitons are susceptible, in general, to an irreversible decay into vortex-antivortex pairs through the snake instability. We show that the snake instability is caused by an unbalanced quantum pressure across the soliton's notch, linking the instability to the Bogoliubov-de Gennes spectrum. In particular, if the angular symmetry is maintained (or the toroidal trapping is restrictive enough), we show that the RDS is stable (long-lived with a lifetime of order seconds) in two dimensions. Furthermore, when the decay does take place, we show that the snake instability can in fact be reversible, and predict a previously unknown revival phenomenon for the original (many-)RDS system: the soliton structure is recovered and all the point-phase singularities (i.e. vortices) disappear. Eventually, however, the decay leads to an example of quantum turbulence; a quantum example of the laminar-to-turbulent type of transition.
Resumo:
The modification of pyruvate kinase (PK) and lactate dehydrogenase (LDH) activity in foot muscle of the mussel Mytilus galloprovincialis during exposure to air and recovery in water was investigated. In the course of exposure to air, the activity of these enzymes measured at high and low substrate concentrations showed successive increases and decreases. Returning the mussels to water after exposure to air affected enzyme activity in a manner similar to anaerobiosis. When measuring at saturated concentrations of substrates and substrate and coenzyme for PK and LDH, respectively, the maximum activation of PK (37%) was observed at 4 h of animal exposure to air, and for LDH (67%) at 6 h exposure to air. During 24 h of exposure of animals to air, PK activity practically reached the stock level, while LDH was still activated (148%). The change in lactate dehydrogenase activity in mussel muscle during anoxia and recovery is described here for the first time. Variation in pyruvate kinase activity during exposure to air and recovery is linked to the alteration of half-maximal saturation constants and maximal velocity for both substrates. The possible role of reversible phosphorylation in the regulation of pyruvate kinase and lactate dehydrogenase properties is discussed
Resumo:
Autonomic neuropathy is a frequent complication of diabetes associated with higher morbidity and mortality in symptomatic patients, possibly because it affects autonomic regulation of the sinus node, reducing heart rate (HR) variability which predisposes to fatal arrhythmias. We evaluated the time course of arterial pressure and HR and indirectly of autonomic function (by evaluation of mean arterial pressure (MAP) variability) in rats (164.5 ± 1.7 g) 7, 14, 30 and 120 days after streptozotocin (STZ) injection, treated with insulin, using measurements of arterial pressure, HR and MAP variability. HR variability was evaluated by the standard deviation of RR intervals (SDNN) and root mean square of successive difference of RR intervals (RMSSD). MAP variability was evaluated by the standard deviation of the mean of MAP and by 4 indices (P1, P2, P3 and MN) derived from the three-dimensional return map constructed by plotting MAPn x [(MAPn+1) - (MAPn)] x density. The indices represent the maximum concentration of points (P1), the longitudinal axis (P2), and the transversal axis (P3) and MN represents P1 x P2 x P3 x 10-3. STZ induced increased urinary glucose in diabetic (D) rats compared to controls (C). Seven days after STZ, diabetes reduced resting HR from 380.6 ± 12.9 to 319.2 ± 19.8 bpm, increased HR variability, as demonstrated by increased SDNN, from 11.77 ± 1.67 to 19.87 ± 2.60 ms, did not change MAP, and reduced P1 from 61.0 ± 5.3 to 51.5 ± 1.8 arbitrary units (AU), P2 from 41.3 ± 0.3 to 29.0 ± 1.8 AU, and MN from 171.1 ± 30.2 to 77.2 ± 9.6 AU of MAP. These indices, as well as HR and MAP, were similar for D and C animals 14, 30 and 120 days after STZ. Seven-day rats showed a negative correlation of urinary glucose with resting HR (r = -0.76, P = 0.03) as well as with the MN index (r = -0.83, P = 0.01). We conclude that rats with short-term diabetes mellitus induced by STZ presented modified autonomic control of HR and MAP which was reversible. The metabolic control may influence these results, suggesting that insulin treatment and a better metabolic control in this model may modify arterial pressure, HR and MAP variability
Resumo:
The effect of hypoxia on the levels of glycogen, glucose and lactate as well as the activities and binding of glycolytic and associated enzymes to subcellular structures was studied in brain, liver and white muscle of the teleost fish, Scorpaena porcus. Hypoxia exposure decreased glucose levels in liver from 2.53 to 1.70 µmol/g wet weight and in muscle led to its increase from 3.64 to 25.1 µmol/g wet weight. Maximal activities of several enzymes in brain were increased by hypoxia: hexokinase by 23%, phosphoglucoisomerase by 47% and phosphofructokinase (PFK) by 56%. However, activities of other enzymes in brain as well as enzymes in liver and white muscle were largely unchanged or decreased during experimental hypoxia. Glycolytic enzymes in all three tissues were partitioned between soluble and particulate-bound forms. In several cases, the percentage of bound enzymes was reduced during hypoxia; bound aldolase in brain was reduced from 36.4 to 30.3% whereas glucose-6-phosphate dehydrogenase fell from 55.7 to 28.7% bound. In muscle PFK was reduced from 57.4 to 41.7% bound. Oppositely, the proportion of bound aldolase and triosephosphate isomerase increased in hypoxic muscle. Phosphoglucomutase did not appear to occur in a bound form in liver and bound phosphoglucomutase disappeared in muscle during hypoxia exposure. Anoxia exposure also led to the disappearance of bound fructose-1,6-bisphosphatase in liver, whereas a bound fraction of this enzyme appeared in white muscle of anoxic animals. The possible function of reversible binding of glycolytic enzymes to subcellular structures as a regulatory mechanism of carbohydrate metabolism is discussed.
Resumo:
Textile dyes bind to proteins leading to selective co-precipitation of a complex involving one protein molecule and more than one dye molecule of opposite charge in acid solutions, in a process of reversible denaturation that can be utilized for protein fractionation. In order to understand what occurs before the co-precipitation, a kinetic study using bovine ß-trypsin and sodium flavianate was carried out based on reaction progress curve techniques. The experiments were carried out using a-CBZ-L-Lys-p-nitrophenyl ester as substrate which was added to 50 mM sodium citrate buffer, pH 3.0, containing varying concentrations of ß-trypsin and dye. The reaction was recorded spectrophotometrically at 340 nm for 30 min, and the families of curves obtained were analyzed simultaneously by fitting integrated Michaelis-Menten equations. The dye used behaved as a competitive inhibitor of trypsin at pH 3.0, with Ki = 99 µM; kinetic parameters for the substrate hydrolysis were: Km = 32 µM, and kcat = 0.38/min. The competitive character of the inhibition suggests a specific binding of the first dye molecule to His-57, the only positively charged residue at the active site of the enzyme.
Resumo:
This review explores advances in our understanding of the intracellular regulation of the endothelial isoform of nitric oxide synthase (eNOS) in the context of its dynamically regulated subcellular targeting. Nitric oxide (NO) is a labile molecule, and may play important biological roles both within the cell in which it is synthesized and in its interactions with nearby cells and molecules. The localization of eNOS within the cell importantly influences the biological role and chemical fate of the NO produced by the enzyme. eNOS, a Ca2+/calmodulin-dependent enzyme, is subject to a complex pattern of intracellular regulation, including co- and post-translational modifications and interactions with other proteins and ligands. In endothelial cells and cardiac myocytes eNOS is localized in specialized plasmalemmal signal-transducing domains termed caveolae; acylation of the enzyme by the fatty acids myristate and palmitate is required for targeting of the protein to caveolae. Targeting to caveolae facilitates eNOS activation following receptor stimulation. In resting cells, eNOS is tonically inhibited by its interactions with caveolin, the scaffolding protein in caveolae. However, following agonist activation, eNOS dissociates from caveolin, and nearly all the eNOS translocates to structures within the cell cytosol; following more protracted incubations with agonists, most of the cytosolic enzyme subsequently translocates back to the cell membrane. The agonist-induced internalization of eNOS is completely abrogated by chelation of intracellular Ca2+. These rapid receptor-mediated effects are seen not only for "classic" eNOS agonists such as bradykinin, but also for estradiol, indicating a novel non-genomic role for estrogen in eNOS activation. eNOS targeting to the membrane is labile, and is subject to receptor-regulated Ca2+-dependent reversible translocation, providing another point for regulation of NO-dependent signaling in the vascular endothelium.
Resumo:
Connexin43 (Cx43) is a major gap junction protein present in the Fischer-344 rat aorta. Previous studies have identified conditions under which selective disruption of intercellular communication with heptanol caused a significant, readily reversible and time-dependent diminution in the magnitude of a1-adrenergic contractions in isolated rat aorta. These observations have indentified a significant role for gap junctions in modulating vascular smooth muscle tone. The goal of these steady-state studies was to utilize isolated rat aortic rings to further evaluate the contribution of intercellular junctions to contractions elicited by cellular activation in response to several other vascular spasmogens. The effects of heptanol were examined (0.2-2.0 mM) on equivalent submaximal (»75% of the phenylephrine maximum) aortic contractions elicited by 5-hydroxytryptamine (5-HT; 1-2 µM), prostaglandin F2a (PGF2a; 1 µM) and endothelin-1 (ET-1; 20 nM). Statistical analysis revealed that 200 µM and 500 µM heptanol diminished the maximal amplitude of the steady-state contractile responses for 5-HT from a control response of 75 ± 6% (N = 26 rings) to 57 ± 7% (N = 26 rings) and 34.9 ± 6% (N = 13 rings), respectively (P<0.05), and for PGF2a from a control response of 75 ± 10% (N = 16 rings) to 52 ± 8% (N = 19 rings) and 25.9 ± 6% (N = 18 rings), respectively (P<0.05). In contrast, 200 µM and 500 µM heptanol had no detectable effect on the magnitude of ET-1-induced contractile responses, which were 76 ± 5.0% for the control response (N = 38 rings), 59 ± 6.0% in the presence of 200 µM heptanol (N = 17 rings), and 70 ± 6.0% in the presence of 500 µM heptanol (N = 23 rings) (P<0.13). Increasing the heptanol concentration to 1 mM was associated with a significant decrease in the magnitude of the steady-state ET-1-induced contractile response to 32 ± 5% (21 rings; P<0.01); further increasing the heptanol concentration to 2 mM had no additional effect. In rat aorta then, junctional modulation of tissue contractility appears to be agonist-dependent.
Resumo:
A function of the endogenous analgesic system is to prevent recuperative behaviors generated by tissue damage, thus preventing the emission of species-specific defensive behaviors. Activation of intrinsic nociception is fundamental for the maintenance of the behavioral strategy adopted. Tonic immobility (TI) is an inborn defensive behavior characterized by a temporary state of profound and reversible motor inhibition elicited by some forms of physical restraint. We studied the effect of TI behavior on nociception produced by the formalin and hot-plate tests in guinea pigs. The induction of TI produced a significant decrease in the number of flinches (18 ± 6 and 2 ± 1 in phases 1 and 2) and lickings (6 ± 2 and 1 ± 1 in phases 1 and 2) in the formalin test when compared with control (75 ± 13 and 22 ± 6 flinches in phases 1 and 2; 28 ± 7 and 17 ± 7 lickings in phases 1 and 2). In the hot-plate test our results also showed antinociceptive effects of TI, with an increase in the index of analgesia 30 and 45 min after the induction of TI (0.67 ± 0.1 and 0.53 ± 0.13, respectively) when compared with control (-0.10 ± 0.08 at 30 min and -0.09 ± 0.09 at 45 min). These effects were reversed by pretreatment with naloxone (1 mg/kg, ip), suggesting that the hypoalgesia observed after induction of TI behavior, as evaluated by the algesimetric formalin and hot-plate tests, is due to activation of endogenous analgesic mechanisms involving opioid synapses.
Resumo:
Sea anemones are a rich source of biologically active substances. In crayfish muscle fibers, Bunodosoma cangicum whole venom selectively blocks the I K(Ca) currents. In the present study, we report for the first time powerful hemolytic and neuroactive effects present in two different fractions obtained by gel-filtration chromatography from whole venom of B. cangicum. A cytolytic fraction (Bcg-2) with components of molecular mass ranging from 8 to 18 kDa elicited hemolysis of mouse erythrocytes with an EC50 = 14 µg/ml and a maximum dose of 22 µg/ml. The effects of the neuroactive fraction, Bcg-3 (2 to 5 kDa), were studied on isolated crab nerves. This fraction prolonged the compound action potentials by increasing their duration and rise time in a dose-dependent manner. This effect was evident after the washout of the preparation, suggesting the existence of a reversible substance that was initially masking the effects of an irreversible one. In order to elucidate the target of Bcg-3 action, the fraction was applied to a tetraethylammonium-pretreated preparation. An additional increase in action potential duration was observed, suggesting a blockade of a different population of K+ channels or of tetraethylammonium-insensitive channels. Also, tetrodotoxin could not block the action potentials in a Bcg-3-pretreated preparation, suggesting a possible interaction of Bcg-3 with Na+ channels. The present data suggest that B. cangicum venom contains at least two bioactive fractions whose activity on cell membranes seems to differ from the I K(Ca) blockade described previously.
Resumo:
The aim of the present study was to investigate the expression of alpha-smooth muscle actin (alpha-SM-actin) and proliferating cell nuclear antigen (PCNA) in renal cortex from patients with focal segmental glomerulosclerosis (FSGS) and their correlations with parameters of renal disease progression. We analyzed renal biopsies from 41 patients with idiopathic FSGS and from 14 control individuals. The alpha-SM-actin immunoreaction was evaluated using a score that reflected the changes in the extent and intensity of staining in the glomerular or cortical area. The PCNA reaction was quantified by counting the labeled cells of the glomeruli or renal cortex. The results, reported as median ± percentile (25th; 75th), showed that the alpha-SM-actin scores in the glomeruli and tubulointerstitium from the renal cortex were 2.0 (2.0; 4.0) and 3.0 (3.0; 4.0), respectively, in patients with FSGS, and 0.5 (0.0; 1.0) and 0.0 (0.0; 0.5) in the controls. The number of PCNA-positive cells per glomerulus and graded field of tubulointerstitium from the renal cortex was 0.2 (0.0; 0.4) and 1.1 (0.3; 2.2), respectively, for patients with FSGS, and 0.0 (0.0; 0.5) and 0.0 (0.0; 0.0) for controls. The present data showed an increase of alpha-SM-actin and PCNA expression in glomeruli and renal cortex from FSGS patients. The extent of immunoreaction for alpha-SM-actin in the tubulointerstitial area was correlated with the intensity of proteinuria. However, there was no correlation between the kidney expression of these proteins and the reciprocal of plasma creatinine level or renal fibrosis. These findings suggest that the immunohistochemical alterations may be reversible.