900 resultados para restriction enzyme
Resumo:
Gymnogongrus sp. (Phyllophoraceae) from Nova Scotia, Canada, identified tentatively as G. devoniensis (Greville) Schotter, grows in association with an Erythrodermis-like crust that forms chains of tetrasporangia or bisporangia. The crust resembles tetrasporophytic phases of other Gymnogongrus species, but in culture both it and the G. ?devoniensis gametophytes cycle independently by apomictic reproduction.
Resumo:
Lipopolysaccharide is a major component of the outer membrane of gram-negative bacteria and provides a permeability barrier to many commonly used antibiotics. ADP-heptose residues are an integral part of the LPS inner core, and mutants deficient in heptose biosynthesis demonstrate increased membrane permeability. The heptose biosynthesis pathway involves phosphorylation and dephosphorylation steps not found in other pathways for the synthesis of nucleotide sugar precursors. Consequently, the heptose biosynthetic pathway has been marked as a novel target for antibiotic adjuvants, which are compounds that facilitate and potentiate antibiotic activity. D-alpha,beta-D-heptose-1,7-bisphosphate phosphatase (GmhB) catalyzes the third essential step of LPS heptose biosynthesis. This study describes the first crystal structure of GmhB and enzymatic analysis of the protein. Structure-guided mutations followed by steady state kinetic analysis, together with established precedent for HAD phosphatases, suggest that GmhB functions through a phosphoaspartate intermediate. This study provides insight into the structure-function relationship of GmhB, a new target for combatting gram-negative bacterial infection.
Resumo:
The barrier imposed by lipopolysaccharide (LPS) in the outer membrane of Gram-negative bacteria presents a significant challenge in treatment of these organisms with otherwise effective hydrophobic antibiotics. The absence of L-glycero-D-manno-heptose in the LPS molecule is associated with a dramatically increased bacterial susceptibility to hydrophobic antibiotics and thus enzymes in the ADP-heptose biosynthesis pathway are of significant interest. GmhA catalyzes the isomerization of D-sedoheptulose 7-phosphate into D-glycero-D-manno-heptose 7-phosphate, the first committed step in the formation of ADP-heptose. Here we report structures of GmhA from Escherichia coli and Pseudomonas aeruginosa in apo, substrate, and product-bound forms, which together suggest that GmhA adopts two distinct conformations during isomerization through reorganization of quaternary structure. Biochemical characterization of GmhA mutants, combined with in vivo analysis of LPS biosynthesis and novobiocin susceptibility, identifies key catalytic residues. We postulate GmhA acts through an enediol-intermediate isomerase mechanism.
Resumo:
The glycan chain of the S-layer glycoprotein of Geobacillus stearothermophilus NRS 2004/3a is composed of repeating units [-->2)-alpha-l-Rhap-(1-->3)-beta-l-Rhap-(1-->2)-alpha-l-Rhap-(1-->], with a 2-O-methyl modification of the terminal trisaccharide at the nonreducing end of the glycan chain, a core saccharide composed of two or three alpha-l-rhamnose residues, and a beta-d-galactose residue as a linker to the S-layer protein. In this study, we report the biochemical characterization of WsaP of the S-layer glycosylation gene cluster as a UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase that primes the S-layer glycoprotein glycan biosynthesis of Geobacillus stearothermophilus NRS 2004/3a. Our results demonstrate that the enzyme transfers in vitro a galactose-1-phosphate from UDP-galactose to endogenous phosphoryl-polyprenol and that the C-terminal half of WsaP carries the galactosyltransferase function, as already observed for the UDP-Gal:phosphoryl-polyprenol Gal-1-phosphate transferase WbaP from Salmonella enterica. To confirm the function of the enzyme, we show that WsaP is capable of reconstituting polysaccharide biosynthesis in WbaP-deficient strains of Escherichia coli and Salmonella enterica serovar Typhimurium.
Resumo:
Outer membrane protein (MP) profiles and multilocus enzyme electrophoresis (MEE) analysis were used as tools for differentiating clinical isolates of Proteus spp. Fourteen distinct MP profiles were established by sodium dodecyl sulfate-urea polyacrylamide gel electrophoresis in 54 clinical isolates of Proteus spp. (44 strains identified as P. mirabilis and 10 strains identified as P. vulgaris). Forty-one isolates of P. mirabilis and eight isolates of P. vulgaris were grouped within six and three MP profiles, respectively. The remaining P. mirabilis and P. vulgaris isolates had unique profiles. MEE analysis was used to further discriminate among the strains belonging to the same MP groups. Thirty-five distinct electrophoretic types (ETs) were identified among P. mirabilis isolates. The isolates of P. mirabilis from the four most common MP groups were subgrouped into 30 ETs. All of the P. vulgaris strains had unique ETs. The results suggest that upon biochemical classification of Proteus isolates as P. mirabilis or P. vulgaris, further differentiation among strains of the same species can be obtained by the initial determination of MP profiles followed by MEE analysis of strains with identical MPs.
Resumo:
OBJECTIVE:
To compare blood pressure between 50-year-old adults who were born at term (37-42 weeks of gestation) with intra-uterine growth restriction (IUGR; birth weight <10th centile) and a control group of similar age born at term without IUGR (birth weight =10th centile).
STUDY DESIGN:
Controlled comparative study.
METHODS:
Participants included 232 men and women who were born at the Royal Maternity Hospital, Belfast, a large regional maternity hospital in Northern Ireland, between 1954 and 1956. One hundred and eight subjects who were born with IUGR were compared with 124 controls with normal birth weight for gestation. The main outcome measures were systolic and diastolic blood pressure at approximately 50 years of age, measured according to European recommendations.
RESULTS:
The IUGR group had higher systolic and diastolic blood pressure than the control group: 131.5 [95% confidence interval (CI) 127.9-135.1] vs 127.1 (95% CI 124.3-129.2) mmHg and 82.3 (95% CI 79.6-85.0) vs 79.0 (95% CI 77.0-81.0) mmHg, respectively. After adjustment for gender, the differences between the groups were statistically significant: systolic blood pressure 4.5 (95% CI 0.3-8.7) mmHg and diastolic blood pressure 3.4 (95% CI 0.2-6.5) mmHg (both P < 0.05). More participants in the IUGR group were receiving treatment for high blood pressure compared with the control group [16 (15%) vs 11 (9%)], although this was not statistically significant. The proportion of subjects with blood pressure >140/90 mmHg or currently receiving antihypertensive treatment was 45% (n = 49) for the IUGR group, and 31% (n = 38) for the control group (odds ratio 1.9, 95% CI 1.1-3.3). Adjustment for potential confounders made little difference.
CONCLUSIONS:
IUGR is associated with higher blood pressure at 50 years of age. Individuals born with IUGR should have regular blood pressure screening and early treatment as required. Hypertension remains underdiagnosed and undertreated in adult life.
Resumo:
A replica plate screening technique, based on the acid molybdate assay for detection of phosphate has been developed to permit the detection of microorganisms capable of mineralizing organophosphonates. The method was further adapted as the basis of an activity stain for the detection of the carbon - phosphorus bond cleavage enzyme phosphonoacetate hydrolase in PAGE gels.