931 resultados para resistance to bruchids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The murine model of Leishmania major infection has been an invaluable tool in understanding T helper differentiation in vivo. The initial evidence for a role of distinct CD4(+) T helper subsets in the outcome of infection was first obtained with this experimental model. The development of CD4(+) Th1 cells was associated with resolution of the lesion, control of parasite replication, and resistance to re-infection in most of the mouse strains investigated (i.e., C57BL/6). In contrast, differentiation of CD4(+) Th2 cells correlated with the development of unhealing lesions, and failure to control parasite load in a few strains (i.e., BALB/c). Since these first reports, an incredible amount of effort has been devoted to understanding the various parameters involved in the differentiation of these, and more recently discovered T helper subsets such as Th17 and T regulatory cells. The discovery of cross-talk between T helper subsets, as well as their plasticity force us to reevaluate the events driving a protective/deleterious T helper immune response following infection with L. major in mice. In this review, we describe the individual contributions of each of these CD4(+) T helper subsets following L. major inoculation, emphasizing recent advances in the field, such as the impact of different substrains of L. major on the pathogenesis of disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The murine model of infection with Leishmania major has allowed the demonstration of a causal relationship between, on the one hand, genetically determined resistance to infection and the development of a Th1 CD4+ cell response, and on the other hand, genetically determined susceptibility and Th2 cell maturation. Using this murine model of infection, the role of cytokines in directing the functional differentiation pathway of CD4+ T cell precursors, has been demonstrated in vivo. Thus, IL-12 and IFN-gamma have been shown to favour Th1 cell development and IL-4 is crucial for the differentiation of Th2 responses. Maturation of a Th2 response in susceptible BALB/c mice following infection with L. major is triggered by the IL-4 produced during the first two days after parasite inoculation. This IL-4 rapidly renders parasite specific CD4+ T cells precursors unresponsive to IL-12. A restricted population of CD4+ T cells expressing the V beta 4V alpha 8 TCR heterodimer and recognizing a single epitope on the LACK (Leishmania Activated C-Kinase) antigen of L. major is responsible for this rapid production of IL-4, instructing subsequent differentiation towards the Th2 phenotype of CD4+ T cells specific for several parasite antigens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: To assess the in vitro susceptibility of Actinobaculum schaalii to 12 antimicrobial agents as well as to dissect the genetic basis of fluoroquinolone resistance. METHODS: Forty-eight human clinical isolates of A. schaalii collected in Switzerland and France were studied. Each isolate was identified by 16S rRNA sequencing. MICs of amoxicillin, ceftriaxone, gentamicin, vancomycin, clindamycin, linezolid, ciprofloxacin, levofloxacin, moxifloxacin, co-trimoxazole, nitrofurantoin and metronidazole were determined using the Etest method. Interpretation of results was made according to EUCAST clinical breakpoints. The quinolone-resistance-determining regions (QRDRs) of gyrA and parC genes were also identified and sequence analysis was performed for all 48 strains. RESULTS: All isolates were susceptible to amoxicillin, ceftriaxone, gentamicin, clindamycin (except three), vancomycin, linezolid and nitrofurantoin, whereas 100% and 85% were resistant to ciprofloxacin/metronidazole and co-trimoxazole, respectively. Greater than or equal to 90% of isolates were susceptible to the other tested fluoroquinolones, and only one strain was highly resistant to levofloxacin (MIC ?32 mg/L) and moxifloxacin (MIC 8 mg/L). All isolates that were susceptible or low-level resistant to levofloxacin/moxifloxacin (n?=?47) showed identical GyrA and ParC amino acid QRDR sequences. In contrast, the isolate exhibiting high-level resistance to levofloxacin and moxifloxacin possessed a unique mutation in GyrA, Ala83Val (Escherichia coli numbering), whereas no mutation was present in ParC. CONCLUSIONS: When an infection caused by A. schaalii is suspected, there is a risk of clinical failure by treating with ciprofloxacin or co-trimoxazole, and ?-lactams should be preferred. In addition, acquired resistance to fluoroquinolones more active against Gram-positive bacteria is possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our previous investigation on Candida glabrata azole-resistant isolates identified two isolates with unaltered expression of CgCDR1/CgCDR2, but with upregulation of another ATP-binding cassette transporter, CgSNQ2, which is a gene highly similar to ScSNQ2 from Saccharomyces cerevisiae. One of the two isolates (BPY55) was used here to elucidate this phenomenon. Disruption of CgSNQ2 in BPY55 decreased azole resistance, whereas reintroduction of the gene in a CgSNQ2 deletion mutant fully reversed this effect. Expression of CgSNQ2 in a S. cerevisiae strain lacking PDR5 mediated not only resistance to azoles but also to 4-nitroquinoline N-oxide, which is a ScSNQ2-specific substrate. A putative gain-of-function mutation, P822L, was identified in CgPDR1 from BPY55. Disruption of CgPDR1 in BPY55 conferred enhanced azole susceptibility and eliminated CgSNQ2 expression, whereas introduction of the mutated allele in a susceptible strain where CgPDR1 had been disrupted conferred azole resistance and CgSNQ2 upregulation, indicating that CgSNQ2 was controlled by CgPDR1. Finally, CgSNQ2 was shown to be involved in the in vivo response to fluconazole. Together, our data first demonstrate that CgSNQ2 contributes to the development of CgPDR1-dependent azole resistance in C. glabrata. The overlapping in function and regulation between CgSNQ2 and ScSNQ2 further highlight the relationship between S. cerevisiae and C. glabrata.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to identify expressed simple sequence repeats (SSR) markers associated to leaf miner resistance in coffee progenies. Identification of SSR markers was accomplished by directed searches on the Brazilian Coffee Expressed Sequence Tags (EST) database. Sequence analysis of 32 selected SSR loci showed that 65% repeats are of tetra-, 21% of tri- and 14% of dinucleotides. Also, expressed SSR are localized frequently in the 5'-UTR of gene transcript. Moreover, most of the genes containing SSR are associated with defense mechanisms. Polymorphisms were analyzed in progenies segregating for resistance to the leaf miner and corresponding to advanced generations of a Coffea arabica x Coffea racemosa hybrid. Frequency of SSR alleles was 2.1 per locus. However, no polymorphism associated with leaf miner resistance was identified. These results suggest that marker-assisted selection in coffee breeding should be performed on the initial cross, in which genetic variability is still significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objectives of this work were to assess phosphine resistance in insect populations (Tribolium castaneum, Rhyzopertha dominica, Sitophilus zeamais and Oryzaephilus surinamensis) from different regions of Brazil and to verify if the prevailing mechanism of phosphine resistance in these populations involves reduced respiration rates. Sixteen populations of T. castaneum, 15 of R. dominica, 27 of S. zeamais and eight of O. surinamensis were collected from 36 locations over seven Brazilian states. Each population was tested for resistance to phosphine, based on the response of adults to discriminating concentrations, according to FAO standard method. For each insect species, the production of carbon dioxide of the most resistant and of the most susceptible populations was inversely related to their phosphine resistance. The screening tests identified possible phosphine resistant populations. R. dominica and O. surinamensis were less susceptible to phosphine than the other two species. The populations with lower respiration rate showed a lower mortality at discriminating concentration, possibly related to a phosphine resistance mechanism. Phosphine resistance occurs in stored-product insects, in different regions of Brazil, and the resistance mechanism involves reduced respiration rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to evaluate the resistance of genetically modified clones of potato to Potato virus Y (PVY) under field conditions. Genetically modified plants were compared with nontransformed plants of the same cultivar. The plots were flanked with potato plants infected with both PVYº and PVY N strains (spread lines), in order to provide the experimental area with the source of virus, which was naturally spread by the native aphid population. The experiment was weekly monitored by visual inspections and by DAS-Elisa in the plants produced from the harvested tubers, in order to evaluate the resistance of transgenic plants throughout the plant growth cycle. By the end of the third year, no infection symptoms were observed in the 1P clone; clone 63P showed 1% of infection, in contrast to about 90% of nontransformed plants infected. The stable expression of resistance to PVY provided by the coat protein gene was obtained in genetically modified clones of potato plants cultivar Achat under field conditions, during three consecutive years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to evaluate the oviposition preference of Diatraea saccharalis and the effect of ten sugarcane cultivars on larval development. Oviposition preference was assessed under greenhouse conditions by three releases of couples of moths, with subsequent counting of egg masses and eggs per plant. In order to evaluate the effect of the cultivars on larval development, each plant was infected with about 150 eggs, and, 29 days later, the total number of internodes, number of bored internodes, number of life forms found, larval and pupal weight and length, and the width of larval head capsule were evaluated. The cultivars IACSP94-2101 and IACSP96-2042, the least preferred by D. saccharalis for oviposition, and IACSP94-2094, the most unfavorable for larvae entrance and development, show resistance to the pest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular characterization of radical prostatectomy specimens after systemic therapy may identify a gene expression profile for resistance to therapy. This study assessed tumor cells from patients with prostate cancer participating in a phase II neoadjuvant docetaxel and androgen deprivation trial to identify mediators of resistance. Transcriptional level of 93 genes from a docetaxel-resistant prostate cancer cell lines microarray study was analyzed by TaqMan low-density arrays in tumors from patients with high-risk localized prostate cancer (36 surgically treated, 28 with neoadjuvant docetaxel þ androgen deprivation). Gene expression was compared between groups and correlated with clinical outcome. VIM, AR and RELA were validated by immunohistochemistry. CD44 and ZEB1 expression was tested by immunofluorescence in cells and tumor samples. Parental and docetaxel-resistant castration-resistant prostate cancer cell lines were tested for epithelial-to-mesenchymal transition (EMT) markers before and after docetaxel exposure. Reversion of EMT phenotype was investigated as a docetaxel resistance reversion strategy. Expression of 63 (67.7%) genes differed between groups (P < 0.05), including genes related to androgen receptor, NF-k B transcription factor, and EMT. Increased expression of EMT markers correlated with radiologic relapse. Docetaxel-resistant cells had increased EMT and stem-like cell markers expression. ZEB1 siRNA transfection reverted docetaxel resistance and reduced CD44 expression in DU-145R and PC-3R. Before docetaxel exposure, a selected CD44 þ subpopulation of PC-3 cells exhibited EMT phenotype and intrinsic docetaxel resistance; ZEB1/CD44 þ subpopulations were found in tumor cell lines and primary tumors; this correlated with aggressive clinical behavior. This study identifies genes potentially related to chemotherapy resistance and supports evi-dence of the EMT role in docetaxel resistance and adverse clinical behavior in early prostate cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular characterization of radical prostatectomy specimens after systemic therapy may identify a gene expression profile for resistance to therapy. This study assessed tumor cells from patients with prostate cancer participating in a phase II neoadjuvant docetaxel and androgen deprivation trial to identify mediators of resistance. Transcriptional level of 93 genes from a docetaxel-resistant prostate cancer cell lines microarray study was analyzed by TaqMan low-density arrays in tumors from patients with high-risk localized prostate cancer (36 surgically treated, 28 with neoadjuvant docetaxel þ androgen deprivation). Gene expression was compared between groups and correlated with clinical outcome. VIM, AR and RELA were validated by immunohistochemistry. CD44 and ZEB1 expression was tested by immunofluorescence in cells and tumor samples. Parental and docetaxel-resistant castration-resistant prostate cancer cell lines were tested for epithelial-to-mesenchymal transition (EMT) markers before and after docetaxel exposure. Reversion of EMT phenotype was investigated as a docetaxel resistance reversion strategy. Expression of 63 (67.7%) genes differed between groups (P < 0.05), including genes related to androgen receptor, NF-k B transcription factor, and EMT. Increased expression of EMT markers correlated with radiologic relapse. Docetaxel-resistant cells had increased EMT and stem-like cell markers expression. ZEB1 siRNA transfection reverted docetaxel resistance and reduced CD44 expression in DU-145R and PC-3R. Before docetaxel exposure, a selected CD44 þ subpopulation of PC-3 cells exhibited EMT phenotype and intrinsic docetaxel resistance; ZEB1/CD44 þ subpopulations were found in tumor cell lines and primary tumors; this correlated with aggressive clinical behavior. This study identifies genes potentially related to chemotherapy resistance and supports evi-dence of the EMT role in docetaxel resistance and adverse clinical behavior in early prostate cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gene Pi-ar confers resistance to Pyricularia grisea race IB-45 in a somaclone derived from immature panicles of the susceptible rice (Oryza sativa) cultivar Araguaia. RAPD technique was used to identify molecular markers linked to this gene utilizing bulked segregant analysis. Initially, the two parental DNAs from the resistant donor SC09 and 'Araguaia' were analyzed using random primers. Of the 240 primers tested, 203 produced amplification products. The two parental DNAs along with the resistant and susceptible bulks of F2 population were screened using 48 primers that differentiated resistant and susceptible parents. Even though eight primers differentiated the resistant bulk from the susceptible bulk, as well as somaclone SC09 and 'Araguaia', only one primer, OPC02 ('GTGAGGCGTC'), was found to be tightly linked (1.7cM) to the resistance gene of somaclone SC09.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thirty-nine rice (Oryza sativa) hybrids and their restorers were assessed for vertical resistance to Pyricularia grisea in the rice blast nursery, and in artificial inoculation tests with two pathotypes, under controlled greenhouse conditions. The hybrids were developed from cytoplasmic genetic male sterile lines 046I and IR 58025A, derived from WA cytoplasm. In the rice blast nursery all hybrids showed susceptible reaction varying from 5 to 9. Compatible and incompatible leaf blast reactions of hybrids to two pathotypes, IC-1 and IB-45, were observed in inoculation tests. A majority of the hybrids were resistant when the restorer was resistant. However, seven of the 25 F1 hybrids exhibited susceptible reactions even when one of the parents was resistant to a pathotype. The partial resistance of 11 hybrids and their parents that showed compatible reactions to two pathotypes was analyzed. Differential interaction between isolates and genotypes was observed for partial resistance in relation to both disease severity and lesion number indicating the specific nature of partial resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last growing seasons, goosegrass (Eleusine spp.) control failures have been observed following application of glyphosate on Roundup Ready® soybean in Rio Grande do Sul (RS) - Brazil, suggesting this species' resistance to the herbicide. Thus, the objectives of this study were to identify the occurrence of goosegrass resistance to the herbicide glyphosate in RS; and to determine the predominant species of the genus Eleusine, as well as the LD50 and GR50 of the suspected resistant biotypes. Two experiments were conducted under greenhouse conditions: one to identify the biotypes resistant to glyphosate, and the other, a dose-response curve experiment, as well as a study of the botanical characteristics of the species. In the first experiment, 39 biotypes were tested, mainly Eleusine indica, collected with suspected resistance to glyphosate. The glyphosate dose was 2,160 g e.a. ha-1, and the control was evaluated at 28 days after treatment. All biotypes were effectively controlled,with the biotypes from the municipality of Boa Vista do Incra showing greater tolerance. Two biotypes suspected of resistance (12.1 and 12.3) and a susceptible biotype in a dose-response experiment were tested at the following doses: 0, 135, 270, 540, 1,080, 1,620, and 2,160 g e.a. ha-1. The results of this experiment showed that biotype 12.1 does not present resistance to glyphosate and biotype 12.3 has a low level resistance since it is effectively controlled by the herbicide at the maximum dose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ALS-inhibiting herbicides, especially metsulfuron-methyl, are widely used for weed control, mainly wheat and barley in southern Brazil. Raphanus raphanistrum is a major weed of winter crops. However, in recent years, R.raphanistrum, after being treated with metsulfuron, has shown no symptoms of toxicity, possibly due to herbicide resistance. Aiming to evaluate the existence of R.raphanistrum biotypes resistant to metsulfuron, an experiment was conducted in a greenhouse, in a completely randomized design with four replications. The plots consisted of pots with six plants. The treatments consisted of the interaction of resistant R. raphanistrum (biotype R) and susceptible R. raphanistrum (biotypes S) with ten doses of the herbicide (0.0; 0.6; 1.2; 2.4; 4.8; 9.6; 19.2; 38.4; 76.8 and 153.6 g i.a. ha-1). The application of the test herbicides occurred when the crop was at the stage of 3 to 4 true leaves. The variables analyzed were control and dry matter accumulation. Statistical analysis of dose-response curves was performed by non linear regression. Biotype S was susceptible to the herbicide even at doses below the recommended. Biotype R was insensitive to the herbicide obtaining values of resistance factor (F) higher than 85. The dose-response curve confirmed the existence of R. raphanistrum biotypes with high level of resistance to metsulfuron-methyl.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Weed resistance to herbicides has been a major issue in Brazil, mainly due to the inefficiency of the herbicides used in no-till areas and to the high cost of these herbicide treatments. Failures in controlling the weed Conyza have been reported in Western and Northern grain crop areas in Paraná (Brazil). This work aimed to evaluate the potential occurrence of C. sumatrensis biotypes resistant to the herbicides chlorimuron-ethyl and glyphosate. Experiments were carried out under greenhouse conditions with four biotypes (Cascavel-2, Toledo-4, Tupãssi-6, and Assis Chateaubriand-7) possibly resistant to, as well as a population considered susceptible to chlorimuron-ethyl and glyphosate. To obtain dose-response curves, eight herbicide doses of chlorimuron-ethyl (0, 2.5, 5, 10, 20, 40, 80 and 160 g ha-1) and glyphosate (0, 90, 180, 360, 720, 1,440, 2,880 and 5,760 g e.a. ha-1) were applied and weed control and shoot biomass evaluations were made. Results provided evidence that two biotypes (Cascavel-2 and Tupãssi-6) were resistant to glyphosate and four biotypes (Cascavel-2, Toledo-4, Tupãssi-6 and Assis Chateaubriand-7) were resistant to chlorimuron­ethyl. Multiple resistance to glyphosate and chlorimuron was confirmed for biotypes Cascavel­2 and Tupãssi 6. This is the first report on multiple resistance in Conyza sumatrensis, worldwide.