901 resultados para radius of curvature measurement
Resumo:
The BaMA(10)O(17) (M = Be, Mg, Ca, Zn, Cd, Mn, Co, Li) system has been synthesized by solid state method and characterized by XRD. The results show that when M is Mg, Zn, Mn, Co, Li, there exists the structure of beta-Al2O3 for BaMAl10O17 system, and when M indicates Cd, beta-Al2O3 structure is formed accompanying alpha-Al2O3 phase, and when M represents Be and Ca, beta-Al2O3 structure cannot be formed. This demonstrates that the condition forming beta-Al2O3 structure compounds for the system BaMAl10O17 is 0.05nm < R-M < 0.09nm (R-M represents the radius of M). The thought that if a M ion can form a stable spinel structure there exsits a corresponding magnetoplumbite and beta-alumina structure is proposed for BaMAl10O17 system according to the experimental results. When M is Li, Be, Zn, Eu2+ activator produces an emission of nearly 450 nm with half height width about 50 nm, when M is Mn, there are simultaneously the emissions of Eu2+ and Mn2+ and the excitation energy of Eu2+ can transfer to Mn2+ in the host, when M is Cd, Eu2+ displays a double-emission band, which can be explained by the Jahn-Teller's effect. It is possible for the system BaMAl10O17 with M being Li, Be, Zn to become blue-emitting component in three colour lamp through further study.
Resumo:
The solution structures of diamagnetic lanthanide (III) complexes of DTPA-BIN (Ln = La, Y, Lu, Sc) have been investigated by H-1 NMR, C-13 NMR and 2D NMR. For each complex, two or more species of asymmetric conformations with little distinction were identified at room temperature. And their solution structures vary with the radius of the central metals. NMR spectra support the hypothesis that Sc3+ with smaller radius formed an eight-coordinated structure with DTPA-BIN, La3+ with larger radius formed nine- or ten-coordinated structures with DTPA-BIN, and Y (DTPA-BIN) and Lu (DTPA-BIN) had nine-coordinated solution structures. The solution structure of Gd (DTPA-BIN) was obtained from the similarity of radius between Gd3+ and Y3+, which is a nine-coordinated structure formed by three nitrogens, three acetate oxygens, two acetyl oxygens, one water molecule and a gadolinium(III) cation.
Resumo:
Reaction of NdCl3, with AlCl3 and mesitylene in benzene gives complex [Nd(eta (6)-1,3,5-C6H3Me3) (AlCl4)(3)] (C6H6) (1) which was characterized by elemental analysis, IR spectra, MS and X-lay diffractions. The X-ray determination indicates that 1 has a distorted pentagonal bipyramidal geometry and crystallizes in the monoclinic, space group P2(1)/n with a = 0.9586(2), b = 1.1717(5), c = 2.8966(7) nm, beta = 90.85 (2)degrees, V = 3.2529(6) nm(3), D-c = 1.573 g/cm(3), Z = 4. A comparison of bond parameters for all the reported Ln(eta (6)-Ar) (AlCl4)(3) complexes indicates that the bond distance of Ln-C is shortened with the increasing of methyl group on benzene and with the decreasing of radius of lanthanide ions.
Resumo:
The influence of muffin-tin approximation on energy band gap was studied using LMTO-ASA (Linear Muffin-Tin Orbital-Atomic Sphere Approximation) approach. Since the diverse data are available for LaX(X=N, P, As, Sb), they are presented in our research as an example in order to test the reliability of our results. Four groups of muffin-tin radii were chosen, they were the fitted muffin-tin radii based on the optical properties of the crystals (the first), 1 : 1 for La : X(the second), 1.5 : 1 for La : X(the third), and a group of radii derived by making the charge in the interstitial space to be zero(the fourth). The results show that the fitted muffin-tin radii (the first group) give the best results compared with experimental values, and the predicted energy band gaps are very sensitive to the choice of muffin-tin radius in comparison with the other groups. The second and the third delivered results somewhere in between, while the fourth provided the worst results compared with the other groups. For the same crystal, with the increase of muffin-tin radius of lanthanum, the calculated energy band gaps decreased, going from semi-conductor to semimetal. This again clearly indicated the sensitivity of energy band structure on muffin-tin approximation.
Resumo:
Covalent radii of the bonding elements have strong effects on the linear electro-optic coefficients of zinc blende crystals; these effects can be quantitatively determined by investigating the relation between the difference in the atomic sizes rho and the magnitude of the linear electro-optic tensor coefficient r(41). It is interesting to note that for the same cation Zn2+, Ga3+, or In3+ the magnitude of r(41) increases with increased covalent radius of the bonded anion r(beta). Especially with the increasing tendency of the parameter rho, the magnitude of r(41) of crystals that have a same cation will increase suddenly when the value of r(beta) becomes larger. (C) 1997 Academic Press.
Resumo:
Steady-state voltammograms at a microdisk electrode are used to measure the diffusion coefficient (D) and standard heterogeneous rate constant (k(s)) of ferrocene in polyelectrolyte PEG.MClO(4). The diffusion coefficient and standard heterogeneous rate constant of ferrocene are both smaller in polymer solvents than in monomeric solvents. The D and k(s) of ferrocene have been estimated in PEG containing different concentrations and cations of supporting electrolytes, and the dependencies of D and k(s) on temperature have been observed. These results show that the D and k(s) of ferrocene increase with increasing temperature in polyelectrolyte, and with increasing cation radius of supporting electrolyte, eg D and k(s) increase in the order Bu(4)NClO(4) > NaClO4 > LiClO4. On the other hand, D and k(s) increase with decreasing concentration of supporting electrolyte. The dependence of the half-wave potential (E(1/2)) on the concentration of the supporting electrolyte is also observed. E(1/2) shifts in the negative direction as the concentration of supporting electrolyte increases. (C) 1997 Elsevier Science Ltd.
Resumo:
Two soluble high-performance polyimides, poly(BCPOBDA/DMMDA) and poly(ODPA/DMMDA), in CHCl3 at 25 degrees C have been studied using laser light scattering. We found that the z-average radius of gyration ([R(g)]) can be scaled to the weight-average molecular weight (M(w)) as [R(g)] (nm) = 4.95 x 10(-2)M(w)(0.52) and [R(g)] (nm) = 1.25 x 10(-2)M(w)(0.66) respectively for poly(BCPOBDA/DMMDA) and poly(ODPA/DMMDA), indicating that poly(ODPA/DMMDA) in CHCl3 at 25 degrees C has a more extended chain conformation than poly(BCPOBDA/DMMDA). Using the wormlike chain model approach, we found that the Flory characteristic ratios (C*) of poly(BCPOBDA/DMMDA) and poly(ODPA/DMMDA) are similar to 20 and similar to 31, respectively, indicating that both of them have a slightly extended chain conformation in comparison with typical flexible polymer chains, such as polystyrene, whose C-infinity is similar to 10. A combination of the weight-average molar mass (M(w)) with the translational diffusion coefficient distributions (G(D)) has led to D (cm(2)/s) = 3.53 x 10(-4)M(-0.579) and D (cm(2)/s) = 4.30 x 10(-4)M(-0.613) respectively for two soluble high-performance polyimides, poly(BCPOBDA/DMMDA) and poly(ODPA/DMMTA), in CHCl3 at 25 degrees C. Using these two calibrations, we have successfully characterized the molar mass distributions of the two polyimides from their corresponding G(D)s. The exponents of these two calibrations further confirm that both of the polyimides have a slightly extended coil chain conformation in CHCl3. The chain flexibility difference between these two polyimides has also been discussed.
Laser light-scattering study of novel thermoplastics .2. Phenolphthalein poly(ether sulfone) (PES-C)
Resumo:
Five narrowly distributed fractions of phenolphthalein poly(ether sulfone) (PES-C) were studied in CHCl3 by both static and dynamic laser light scattering (LLS) at 25 degrees C. The dynamic LLS showed that the PES-C samples contain some large polymer clusters as in previously studied phenolphthalein poly(ether ketone)(PEK-C). These large clusters can be removed by a 0.1-mu m filter. Our results showed that [R(g)(2)](1/2)(z) = (3.35 +/- 0.13) x 10(-2) M(w)((0.52 +/- 0.03)) and [D] = (2.26 +/- 0.02) x 10(-4)M(w)-((0.54) +/- 0.03)) with [R(g)(2)](1/2)(z), M(w) and [D] being the z-average radius of gyration, the weight-average molecular weight, and the z-average translational diffusion coefficient, respectively. A combination of static and dynamic LLS results enabled us to determine D = (2.45 +/- 0.04) x 10(-4)M-((0.55 +/- 0.05)), where D and M correspond to monodisperse species. Using this scaling relationship, we have successfully converted the translational diffusion coefficient distribution into the molecular weight distribution for each of the five PES-C fractional The weight-average molecular weights obtained from dynamic light scattering have a good agreement with that obtained from static laser light-scattering measurements.
Resumo:
Five different molecular weight phenolphthalein poly(aryl ether ketone) (PEK-C) fractions in CHCl3 were studied by static and dynamic laser light scattering(LLS). The dynamic LLS revealed that the PEK-C samples contain some large polymer clusters. These large clusters can be removed by filtering the solution with a 0.1-mu m filter. We found that the persistence length of PEK-C in CHCl3 at 25 degrees C is similar to 2 nm and the Flory characteristic ratio, C-infinity is similar to 25. Our results showed that [R(g)(2)](1/2)(z) = (3.50+/-0.20) x 10(-2)M(w)(0.54+/-0.01) and [D] = (2.37+/-0.05) x 10(-4)M(w)(-0.55+/-0.01), with [R(g)(2)](1/2)(z), M(w), and [D] being the z-average radius of gyration, the weight-average molecular weight, and the z-average translational diffusion coefficient, respectively. A combination of static and dynamic LLS results enabled us to determine D = (2.20+/-0.10) x 10(-4)M(-0.555+/-0.015), where D and M correspond to monodisperse species. Using this calibration between D and M,we have determined molecular weight distributions of five PEK-C fractions from their corresponding translational diffusion coefficient distribution.
Resumo:
This article describes a quantitative study of the diffusion rate of ferrocene(Fc) dissolved in ploy(ethylene glycol)(PEG) medium containing MClO(4)(M = Li+, Na+, Bu(4)N(+), Hx(4)N(+)). The apparent diffusion coefficient D-app and the active concentration c(a) of Fc were simultaneously measured by using non-steady-state chronoamperometry. The D-app and c(a) of Fc have been estimated in PEG containing different concentrations and sizes of supporting electrolyte, and the dependence of D-app on ferrocene concentrations has been observed. The values of D-app decrease with increasing concentrations of Fc, increasing concentrations of LiClO4 or the ratio (O:Li) and also with 4 decreasing cation radius of the electrolyte. The temperature dependencies conform to a simple free volume model. The concentration and size of the counterion dependencies of the diffusion rate are similar to the behavior of their dependencies of ionic conductivity in polyelectrolyte.
Resumo:
The theoretical model[17] of an ultramicroelectrode modified with a redox species film is used as the diagnostic tool to characterize the catalytic oxidation of ascorbic acid at carbon fiber ultramicrodisk electrodes coated with an Eastman-AQ-Os(bpy)(3)(2+) film. The electrocatalytic behavior of ascorbic acid at the ultramicroelectrode modified by an Eastman-AQ polymer containing tris(2,2'-bipyridine) osmium(III/II) as mediators is described. In order to determine the five characteristic currents quantitatively, the radius of the ultramicroelectrode and the concentration of ascorbic acid are varied systematically. The kinetic zone diagram has been used to study the electrocatalytic system. This system with 0.5-2.75 mM ascorbic acid belongs to SR + E case, and the concentration profiles of the catalyst in the film are given in detail. Finally, optimizing the design of catalytic system is discussed.
Resumo:
The viscosities of polystyrene-b-poly (ethylene/propylene) diblock copolymer in mixed solvent of n-octane and benzene were measured. The influences of the constitution of the mixed solvent, temperature and concentration were on the viscosity investigated. During the micellization the solution viscosity increases rapidly. The results are consistent with the study on the micellization by light scattering. The average mass of micelleswas measured and the hydrodynamic radius of gyrations were calculated.
Resumo:
The dielectric response of graded composites having general power-law-graded cylindrical inclusions under a uniform applied electric field is investigated. The dielectric profile of the cylindrical inclusions is modeled by the equation epsilon(i)(r)=c(b+r)(k) (where r is the radius of the cylindrical inclusions and c, b and k are parameters). Analytical solutions for the local electrical potentials are derived in terms of hypergeometric functions and the effective dielectric response of the graded composites is predicted in the dilute limit. Moreover, for a simple power-law dielectric profile epsilon(i)(r) = cr(k) and a linear dielectric profile epsilon(i)(r) = c(b + r), analytical expressions of the electrical potentials and the effective dielectric response are derived exactly from our results by taking the limits b -> 0 and k -> 1, respectively. For a higher concentration of inclusions, the effective dielectric response is estimated by an effective-medium approximation. In addition, we have discussed the effective response of graded cylindrical composites with a more complex dielectric profile of inclusion, epsilon(i)(r)=c(b+r)(k)e(beta r). (c) 2005 American Institute of Physics.
Resumo:
A hydrographic section in the region east of Luzon was repeated 14 times during the period from 1986 to 1991. The data revealed the existence of a subsurface countercurrent located on the shoreward side of the Kuroshio with its upper boundary at about 500 m. The countercurrent, which should be called the Luzon Undercurrent (LUG), was only about 50 km wide, which is comparable to the baroclinic radius of deformation. Despite considerable variabilities both in velocity profile and intensity, the LUC appears to be a permanent feature. Over the period of observations, the maximum speed in the LUC calculated from the mean temperature and salinity by assuming geostrophy (relative to 2500 db) was 7 cm s(-1) at about 700 m and its mean geostrophic volume transport was 3.6 Sv (1 Sv = 10(6) m(3) s(-1)). About 28% of this transport was composed of the low-salinity North Pacific Intermediate Water (NPIW) advected to the south along the coast of Luzon. (C) 1997 Elsevier Science Ltd.
Resumo:
Baijiahai uplift is an important hydrocarbon accumulation belt in eastern Jungger Basin, on which Cainan oilfield and lithologic hydrocarbon reservoir named Cai 43 have been discovered and both of them share the same target formation of Jurassic. However, in the subsequent exploration at this region, several wells that designed for lithologic traps of Jurassic were eventually failed, and that indicates the controlling factors of lithologic reservoir distribution are far more complicated than our previous expectation. This dissertation set the strata of the Jurassic in well Cai 43 region as the target, and based on the integrated analysis of structure evolution、fault sealing ability、simulations of sedimentary microfacies and reservoir beds、distribution analysis of high porosity-high permeability carrier beds、drive forces of hydrocarbons、preferential conduit system and conduit model as well as critical values of the reservoir physical properties for hydrocarbon charging, a special method that different from the conventional way to predict favorable lithologic traps was established. And with this method the controlling factors of the hydrocarbon reservoirs formation are figured out, and further more, the favorable exploration targets are point out. At Baijiahai uplift, fault plays as a crucial factor in the process of the hydrocarbon reservoir formation. In this study, it is found out that the availability of a fault that work as the seal for oil and gas are different. The critical value of the lateral mudstone smear factor (Kssf), which is used to measure the lateral sealing ability of fault, for oil is 3.9 while that for gas is 2.1; and the critical value of vertical sealing factor (F), which similarly a measurement for the vertical sealing ability of fault, for oil is 7.3 while that for gas is 5.1. Dongdaohaizi fault belt that possessed well lateral sealing ability since later Cretaceous have bad vertical sealing ability in later Cretaceous, however, it turns to be well now. Based on the comparison of the physical properties that respectively obtained from electronic log calculating、conventional laboratory rock analysis and the additive-pressure bearing laboratory rock analysis, we established the functions through which the porosity and permeability obtained though conventional method can be converted to the values of the subsurface conditions. With this method, the porosity and permeability of the Jurassic strata at the time of previous Tertiary and that in nowadays are reconstructed respectively, and then the characteristics of the distribution of high porosity-high permeability carrier beds in the evolution processes are determined. With the result of these works, it is found that both well Cai 43 region and Cainan oilfield are located on the preferential conduit direction of hydrocarbon migration. This conclusion is consistent with the result of the fluid potential analysis, in which fluid potential of nowadays and that of later Cretaceous are considered. At the same times, experiment of hydrocarbon injection into the addictive-pressure bearing rock is designed and conducted, from which it is found that, for mid-permeability cores of Jurassic, 0.03MPa is the threshold values for the hydrocarbon charging. And here, the conception of lateral pressure gradient is proposed to describe the lateral driving force for hydrocarbon migration. With this conception, it is found that hydrocarbons largely distributed in the areas where lateral pressure gradient is greater than 0. 03MPa/100m. Analysis of critical physical properties indicated that the value of the critical porosity and critical permeability varied with burial depth, and it is the throat radius of a certain reservoir bed that works as a key factor in controlling hydrocarbon content. Three parameters are proposed to describe the critical physical properties in this dissertation, which composite of effective oil-bearing porosity、effective oil-bearing permeability and preferential flow coefficient. And found that critical physical properties, at least to some extent, control the hydrocarbon distribution of Jurassic in Baijiahai uplift. Synthesize the content discussed above, this dissertation analyzed the key factors i.e., critical physical properties、driving force、conduit system and fluid potential, which controlled the formation of the lithologic reservoir in Baijiahai uplift. In all of which conduit system and fluid potential determined the direction of hydrocarbon migration, and substantially they are critical physical properties of reservoir bed and the lateral pressure gradient that controlled the eventually hydrocarbon distribution. At the same times, sand bodies in the major target formation that are recognized by reservoir bed simulation are appraised, then predict favorite direction of the next step exploration of lithologic reservoir.