925 resultados para probabilistic principal component analysis (probabilistic PCA)
Resumo:
The purpose of this study was to assess the composition of the rainwater in Araraquara City, Brazil, a region strongly influenced by pre-harvest burning of sugar cane crops. Chemical and mineralogical variables were measured in rainwater collected during the harvest, dry period of 2009 and the non-harvest, wet period of 2010. Ca2+ and NH4+ were responsible for 55% of cations and NO3- for 45% of anions in rainwater. Al and Fe along with K were the most abundant among trace elements in both soluble and insoluble fractions. High volume weighted mean concentration (VWM) for most of the analyzed species were observed in the harvest, dry period, mainly due to agricultural activities and meteorological conditions. The chemistry of the Araraquara rainwater and principal component analysis (PCA) quantification clearly indicate the concurrence of a diversity of sources from natural to anthropogenic especially related to agricultural activities.
Resumo:
Abstract Background Despite new brain imaging techniques that have improved the study of the underlying processes of human decision-making, to the best of our knowledge, there have been very few studies that have attempted to investigate brain activity during medical diagnostic processing. We investigated brain electroencephalography (EEG) activity associated with diagnostic decision-making in the realm of veterinary medicine using X-rays as a fundamental auxiliary test. EEG signals were analysed using Principal Components (PCA) and Logistic Regression Analysis Results The principal component analysis revealed three patterns that accounted for 85% of the total variance in the EEG activity recorded while veterinary doctors read a clinical history, examined an X-ray image pertinent to a medical case, and selected among alternative diagnostic hypotheses. Two of these patterns are proposed to be associated with visual processing and the executive control of the task. The other two patterns are proposed to be related to the reasoning process that occurs during diagnostic decision-making. Conclusions PCA analysis was successful in disclosing the different patterns of brain activity associated with hypothesis triggering and handling (pattern P1); identification uncertainty and prevalence assessment (pattern P3), and hypothesis plausibility calculation (pattern P2); Logistic regression analysis was successful in disclosing the brain activity associated with clinical reasoning success, and together with regression analysis showed that clinical practice reorganizes the neural circuits supporting clinical reasoning.
Resumo:
Uca populations have an important functional and structural role in many estuarine ecosystems. These crabs exhibit distinct physiological tolerance to salinity gradients, which may partially explain their heterogeneous distribution. In order to investigate the population structure and distribution of Uca spp. in a tropical estuary, we sampled Uca crabs in replicated 0.75 m2 quadrats at six muddy plain areas during monthly intervals between July and November 2012 in spring tidal conditions. Environmental factors including water temperature, salinity, sediment total organic matter, chlorophyll-a, and granulometry were analyzed. We sampled a total of 2919 individuals distributed in three Uca species (U. uruguayensis, U. thayeri and U. maracoani), from which U. uruguayensis was dominant. The density and biomass of individuals were spatially and temporally heterogeneous. During October and November we found higher Uca spp. densities (71.3 ± 47.3 to 77.6 ± 44,5 ind. 0.75 m-²) and biomass (1.8 ± 1.1 to 2.1 ± 1.0 g 0.75 m-2 AFDW) if compared to the previous months, density (July 55,5± 44,1 August 52,5± 34,9 and September 47,7 ± 25,6 ind. 0,75m-²) and biomass in others months (July 1,0± 0,94 August 1,1 ± 0,72 and September 1,3±0,93 g 0.75 m-2 AFDW ). The same pattern was found for other variables, such as salinity (32 and 34), organic matter (30 and 67%) and chlorophyll-a (89 and 46 μg g-1). In two study areas we found this pattern which suggests that higher Uca productivity and food availability are related. A principal component analysis (PCA) suggests that salinity and granulometry (silt) can influence (60% correspondence) the distribution of U. maracoani. For U. uruguayensis and U. thayeri the PCA suggests chlorophyll-a was important, which is a good indicator for labile organic matter. Our study suggests that the population structure and distribution of Uca species may be regulated by food availability, supporting their utility as biological models for ecosystem monitoring.
Resumo:
This thesis is focused on the metabolomic study of human cancer tissues by ex vivo High Resolution-Magic Angle Spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy. This new technique allows for the acquisition of spectra directly on intact tissues (biopsy or surgery), and it has become very important for integrated metabonomics studies. The objective is to identify metabolites that can be used as markers for the discrimination of the different types of cancer, for the grading, and for the assessment of the evolution of the tumour. Furthermore, an attempt to recognize metabolites, that although involved in the metabolism of tumoral tissues in low concentration, can be important modulators of neoplastic proliferation, was performed. In addition, NMR data was integrated with statistical techniques in order to obtain semi-quantitative information about the metabolite markers. In the case of gliomas, the NMR study was correlated with gene expression of neoplastic tissues. Chapter 1 begins with a general description of a new “omics” study, the metabolomics. The study of metabolism can contribute significantly to biomedical research and, ultimately, to clinical medical practice. This rapidly developing discipline involves the study of the metabolome: the total repertoire of small molecules present in cells, tissues, organs, and biological fluids. Metabolomic approaches are becoming increasingly popular in disease diagnosis and will play an important role on improving our understanding of cancer mechanism. Chapter 2 addresses in more detail the basis of NMR Spectroscopy, presenting the new HR-MAS NMR tool, that is gaining importance in the examination of tumour tissues, and in the assessment of tumour grade. Some advanced chemometric methods were used in an attempt to enhance the interpretation and quantitative information of the HR-MAS NMR data are and presented in chapter 3. Chemometric methods seem to have a high potential in the study of human diseases, as it permits the extraction of new and relevant information from spectroscopic data, allowing a better interpretation of the results. Chapter 4 reports results obtained from HR-MAS NMR analyses performed on different brain tumours: medulloblastoma, meningioms and gliomas. The medulloblastoma study is a case report of primitive neuroectodermal tumor (PNET) localised in the cerebellar region by Magnetic Resonance Imaging (MRI) in a 3-year-old child. In vivo single voxel 1H MRS shows high specificity in detecting the main metabolic alterations in the primitive cerebellar lesion; which consist of very high amounts of the choline-containing compounds and of very low levels of creatine derivatives and N-acetylaspartate. Ex vivo HR-MAS NMR, performed at 9.4 Tesla on the neoplastic specimen collected during surgery, allows the unambiguous identification of several metabolites giving a more in-depth evaluation of the metabolic pattern of the lesion. The ex vivo HR-MAS NMR spectra show higher detail than that obtained in vivo. In addition, the spectroscopic data appear to correlate with some morphological features of the medulloblastoma. The present study shows that ex vivo HR-MAS 1H NMR is able to strongly improve the clinical possibility of in vivo MRS and can be used in conjunction with in vivo spectroscopy for clinical purposes. Three histological subtypes of meningiomas (meningothelial, fibrous and oncocytic) were analysed both by in vivo and ex vivo MRS experiments. The ex vivo HR-MAS investigations are very helpful for the assignment of the in vivo resonances of human meningiomas and for the validation of the quantification procedure of in vivo MR spectra. By using one- and two dimensional experiments, several metabolites in different histological subtypes of meningiomas, were identified. The spectroscopic data confirmed the presence of the typical metabolites of these benign neoplasms and, at the same time, that meningomas with different morphological characteristics have different metabolic profiles, particularly regarding macromolecules and lipids. The profile of total choline metabolites (tCho) and the expression of the Kennedy pathway genes in biopsies of human gliomas were also investigated using HR-MAS NMR, and microfluidic genomic cards. 1H HR-MAS spectra, allowed the resolution and relative quantification by LCModel of the resonances from choline (Cho), phosphorylcholine (PC) and glycerolphorylcholine (GPC), the three main components of the combined tCho peak observed in gliomas by in vivo 1H MRS spectroscopy. All glioma biopsies depicted an increase in tCho as calculated from the addition of Cho, PC and GPC HR-MAS resonances. However, the increase was constantly derived from augmented GPC in low grade NMR gliomas or increased PC content in the high grade gliomas, respectively. This circumstance allowed the unambiguous discrimination of high and low grade gliomas by 1H HR-MAS, which could not be achieved by calculating the tCho/Cr ratio commonly used by in vivo 1H MR spectroscopy. The expression of the genes involved in choline metabolism was investigated in the same biopsies. The present findings offer a convenient procedure to classify accurately glioma grade using 1H HR-MAS, providing in addition the genetic background for the alterations of choline metabolism observed in high and low gliomas grade. Chapter 5 reports the study on human gastrointestinal tract (stomach and colon) neoplasms. The human healthy gastric mucosa, and the characteristics of the biochemical profile of human gastric adenocarcinoma in comparison with that of healthy gastric mucosa were analyzed using ex vivo HR-MAS NMR. Healthy human mucosa is mainly characterized by the presence of small metabolites (more than 50 identified) and macromolecules. The adenocarcinoma spectra were dominated by the presence of signals due to triglycerides, that are usually very low in healthy gastric mucosa. The use of spin-echo experiments enable us to detect some metabolites in the unhealthy tissues and to determine their variation with respect to the healthy ones. Then, the ex vivo HR-MAS NMR analysis was applied to human gastric tissue, to obtain information on the molecular steps involved in the gastric carcinogenesis. A microscopic investigation was also carried out in order to identify and locate the lipids in the cellular and extra-cellular environments. Correlation of the morphological changes detected by transmission (TEM) and scanning (SEM) electron microscopy, with the metabolic profile of gastric mucosa in healthy, gastric atrophy autoimmune diseases (AAG), Helicobacter pylori-related gastritis and adenocarcinoma subjects, were obtained. These ultrastructural studies of AAG and gastric adenocarcinoma revealed lipid intra- and extra-cellularly accumulation associated with a severe prenecrotic hypoxia and mitochondrial degeneration. A deep insight into the metabolic profile of human healthy and neoplastic colon tissues was gained using ex vivo HR-MAS NMR spectroscopy in combination with multivariate methods: Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA). The NMR spectra of healthy tissues highlight different metabolic profiles with respect to those of neoplastic and microscopically normal colon specimens (these last obtained at least 15 cm far from the adenocarcinoma). Furthermore, metabolic variations are detected not only for neoplastic tissues with different histological diagnosis, but also for those classified identical by histological analysis. These findings suggest that the same subclass of colon carcinoma is characterized, at a certain degree, by metabolic heterogeneity. The statistical multivariate approach applied to the NMR data is crucial in order to find metabolic markers of the neoplastic state of colon tissues, and to correctly classify the samples. Significant different levels of choline containing compounds, taurine and myoinositol, were observed. Chapter 6 deals with the metabolic profile of normal and tumoral renal human tissues obtained by ex vivo HR-MAS NMR. The spectra of human normal cortex and medulla show the presence of differently distributed osmolytes as markers of physiological renal condition. The marked decrease or disappearance of these metabolites and the high lipid content (triglycerides and cholesteryl esters) is typical of clear cell renal carcinoma (RCC), while papillary RCC is characterized by the absence of lipids and very high amounts of taurine. This research is a contribution to the biochemical classification of renal neoplastic pathologies, especially for RCCs, which can be evaluated by in vivo MRS for clinical purposes. Moreover, these data help to gain a better knowledge of the molecular processes envolved in the onset of renal carcinogenesis.
Resumo:
Facial expression recognition is one of the most challenging research areas in the image recognition ¯eld and has been actively studied since the 70's. For instance, smile recognition has been studied due to the fact that it is considered an important facial expression in human communication, it is therefore likely useful for human–machine interaction. Moreover, if a smile can be detected and also its intensity estimated, it will raise the possibility of new applications in the future
Resumo:
The purpose of this Thesis is to develop a robust and powerful method to classify galaxies from large surveys, in order to establish and confirm the connections between the principal observational parameters of the galaxies (spectral features, colours, morphological indices), and help unveil the evolution of these parameters from $z \sim 1$ to the local Universe. Within the framework of zCOSMOS-bright survey, and making use of its large database of objects ($\sim 10\,000$ galaxies in the redshift range $0 < z \lesssim 1.2$) and its great reliability in redshift and spectral properties determinations, first we adopt and extend the \emph{classification cube method}, as developed by Mignoli et al. (2009), to exploit the bimodal properties of galaxies (spectral, photometric and morphologic) separately, and then combining together these three subclassifications. We use this classification method as a test for a newly devised statistical classification, based on Principal Component Analysis and Unsupervised Fuzzy Partition clustering method (PCA+UFP), which is able to define the galaxy population exploiting their natural global bimodality, considering simultaneously up to 8 different properties. The PCA+UFP analysis is a very powerful and robust tool to probe the nature and the evolution of galaxies in a survey. It allows to define with less uncertainties the classification of galaxies, adding the flexibility to be adapted to different parameters: being a fuzzy classification it avoids the problems due to a hard classification, such as the classification cube presented in the first part of the article. The PCA+UFP method can be easily applied to different datasets: it does not rely on the nature of the data and for this reason it can be successfully employed with others observables (magnitudes, colours) or derived properties (masses, luminosities, SFRs, etc.). The agreement between the two classification cluster definitions is very high. ``Early'' and ``late'' type galaxies are well defined by the spectral, photometric and morphological properties, both considering them in a separate way and then combining the classifications (classification cube) and treating them as a whole (PCA+UFP cluster analysis). Differences arise in the definition of outliers: the classification cube is much more sensitive to single measurement errors or misclassifications in one property than the PCA+UFP cluster analysis, in which errors are ``averaged out'' during the process. This method allowed us to behold the \emph{downsizing} effect taking place in the PC spaces: the migration between the blue cloud towards the red clump happens at higher redshifts for galaxies of larger mass. The determination of $M_{\mathrm{cross}}$ the transition mass is in significant agreement with others values in literature.
Resumo:
In der vorliegenden Arbeit wurden die Blattmerkmale der Juglandaceen auf ihre systematische Verwertbarkeit hin untersucht. Ein Datensatz mit 62 Blattmerkmalen von 48 rezenten Juglandaceen-Arten wurde zusammengetragen. Zusätzlich wurden vier fossile Blattformen erfasst. Die fossilen Blätter stammen aus zwei Fundstätten des deutschen Eozäns. Der Datensatz wurde mit dem Computerprogramm MacClade® auf ein Phylogramm aus Manos und Stone (2001) übertragen (‚character mapping’). Zusätzlich wurde eine Hauptkomponentenanalyse mit dem Computerprogramm PAST® durchgeführt. Die meisten taxonomischen Einheiten der Juglandaceen konnten mithilfe des ‚character mapping’ wiedererkannt werden, die dafür verantwortlichen Blattmerkmale haben somit ihre systematische Signifikanz unter Beweis gestellt. Weiterhin konnte eine Evolutionstendenz des Induments belegt werden. Zwischen den ursprünglichen und den abgeleiteten Juglandaceen-Taxa ist eine zunehmende Differenzierung des Induments zu beobachten. Die fossilen Blattformen bildeten in der Hauptkomponentenanalyse eine eindeutig erkennbare Gruppierung, die von allen rezenten Taxa der Analyse separiert ist. Demnach lassen sie sich nicht durch einen Vergleich mit rezenten Blättern systematisch zuordnen. Die fossilen Blattformen der Juglandaceen bestätigen die hier belegte Evolutions-tendenz des Induments. Sie stehen mit ihren ursprünglichen Indumentstrukturen am Ausgangspunkt der Indumentevolution.
Resumo:
Während der Glazialphasen kam es in den europäischen Mittelgebirgen bedingt durch extensive solifluidale Massenbewegungen zur Bildung von Deckschichten. Diese Deckschichten repräsentieren eine Mischung verschiedener Substrate, wie anstehendes Ausgangsgestein, äolische Depositionen und lokale Erzgänge. Die räumliche Ausdehnung der Metallkontaminationen verursacht durch kleinräumige Erzgänge wird durch die periglaziale Solifluktion verstärkt. Das Ziel der vorliegenden Untersuchung war a) den Zusammenhang zwischen den Reliefeigenschaften und den Ausprägungen der solifluidalen Deckschichten und Böden aufzuklären, sowie b) mittels Spurenelementgehalte und Blei-Isotopen-Verhältnisse als Eingangsdaten für Mischungsmodelle die Beitrage der einzelnen Substrate zum Ausgangsmaterial der Bodenbildung zu identifizieren und quantifizieren und c) die räumliche Verteilung von Blei (Pb) in Deckschichten, die über Bleierzgänge gewandert sind, untersucht, die Transportweite des erzbürtigen Bleis berechnet und die kontrollierenden Faktoren der Transportweite bestimmt werden. Sechs Transekte im südöstlichen Rheinischen Schiefergebirge, einschließlich der durch periglaziale Solifluktion entwickelten Böden, wurden untersucht. Die bodenkundliche Geländeaufnahme erfolgte nach AG Boden (2005). O, A, B und C-Horizontproben wurden auf ihre Spurenelementgehalte und teilweise auf ihre 206Pb/207Pb-Isotopenverhältnisse analysiert. Die steuernden Faktoren der Verteilung und Eigenschaften periglazialer Deckschichten sind neben der Petrographie, Reliefeigenschaften wie Exposition, Hangneigung, Hangposition und Krümmung. Die Reliefanalyse zeigt geringmächtige Deckschichten in divergenten, konvexen Hangbereichen bei gleichzeitig hohem Skelettgehalt. In konvergent, konkaven Hangbereichen nimmt die Deckschichtenmächtigkeit deutlich zu, bei gleichzeitig zunehmendem Lösslehm- und abnehmendem Skelettgehalt. Abhängig von den Reliefeigenschaften und -positionen reichen die ausgeprägten Bodentypen von sauren Braunerden bis hin zu Pseudogley-Parabraunerden. Des Weiteren kommen holozäne Kolluvien in eher untypischen Reliefpositionen wie langgestreckten, kaum geneigten Hangbereichen oder Mittelhangbereichen vor. Außer für Pb bewegen sich die Spurenelementgehalte im Rahmen niedriger Hintergrundgehalte. Die Pb-Gehalte liegen zwischen 20-135 mg kg-1. Abnehmende Spurenelementgehalte und Isotopensignaturen (206Pb/207Pb-Isotopenverhältnisse) von Pb zeigen, dass nahezu kein Pb aus atmosphärischen Depositionen in die B-Horizonte verlagert wurde. Eine Hauptkomponentenanalyse (PCA) der Spurenelementgehalte hat vier Hauptsubstratquellen der untersuchten B-Horizonte identifiziert (Tonschiefer, Löss, Laacher-See-Tephra [LST] und lokale Pb-Erzgänge). Mittels 3-Komponenten-Mischungsmodell, das Tonschiefer, Löss und LST einschloss, konnten, bis auf 10 Ausreißer, die Spurenelementgehalte aller 120 B-Horizontproben erklärt werden. Der Massenbeitrag des Pb-Erzes zur Substratmischung liegt bei <0,1%. Die räumliche Pb-Verteilung zeigt Bereiche lokaler Pb-Gehaltsmaxima hangaufwärtiger Pb-Erzgänge. Mittels eines 206Pb/207Pb-Isotopenverhältnis-Mischungsmodells konnten 14 Bereiche erhöhter lokaler Pb-Gehaltsmaxima ausgewiesen werden, die 76-100% erzbürtigen Bleis enthalten. Mit Hilfe eines Geographischen Informationssystems wurden die Transportweiten des erzbürtigen Bleis mit 30 bis 110 m bestimmt. Die steuerenden Faktoren der Transportweite sind dabei die Schluffkonzentration und die Vertikalkrümmung. Diese Untersuchung zeigt, dass Reliefeigenschaften und Reliefposition einen entscheidenden Einfluss auf die Ausprägung der Deckschichten und Böden im europäischen Mittelgebirgsbereich haben. Mischungsmodelle in Kombination mit Spurenelementanalysen und Isotopenverhältnissen stellen ein wichtiges Werkzeug zur Bestimmung der Beiträge der einzelnen Glieder in Bodensubstratmischungen dar. Außerdem können lokale Bleierzgänge die natürlichen Pb-Gehalte in Böden, entwickelt in periglazialen Deckschichten der letzten Vereisungsphase (Würm), bis über 100 m Entfernung erhöhen.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and found in the atmosphere, aquatic environment, sediments and soils. For environmental risk assessments and the allocation of the polluter it is important to know the PAH sources. PAH contamination sites are usually the result of anthropogenic processes. Three major sources are known: i) petroleum, including crude oil and its refined products and coals (petrogenic PAHs), ii) burning of organic matter (pyrogenic PAHs) and iii) transformation products of natural organic precursors present in the environment (diagenetic processes). In one case elevated PAH concentrations were found in river bank soils when building a retention area along the Mosel River. The source of the PAHs in this area was unclear and required the investigation of possible sources. To evaluate the PAH distribution along the Mosel River, a section of ~ 160 km along the river and a short section along the Saar River were investigated within this study. Concentrations of the Σ16 EPA PAHs were as high as 81 mg kg-1 dry weight (dw). Additionally, coal particles were identified in some soils, which originated from mining activities in the Saarland region. PAH distribution patterns of the 16 EPA PAHs suggest a mainly pyrogenic origin and in some cases a mixture of pyrogenic and petrogenic origin. For a comprehensive investigation five sampling sites were selected. Two sites were located before the confluence of the Mosel and Saar River, one site at the confluence and two sites after the confluence. The examination included typical forensic methods such as PAH distribution patterns of 45 PAHs (including alkylated PAHs), calculation of PAH ratios, determination of PAH alkyl homologues, n-alkanes, principal component analysis (PCA) and coal petrography. The results revealed a mainly pyrogenic source at sampling sites before the confluence of the two rivers. At and after the confluence, a mixture of pyrogenic and petrogenic inputs were present. With the help of coal petrography, coal derived particles could be identified in these soils. Therefore, coal was suggested to be the petrogenic source. It could be shown that sites with diffuse sources of contaminants, like the bank soils of the Mosel River, are difficult to characterize. As previously mentioned for detailed source identifications, the use of various forensic methods is essential. Determination of PAH alkyl homologue series, biomarkers and isotopes are often recommended. Source identification was evaluated using three different methods (i.e. PAH distribution patterns of an extended PAH spectrum, PAH ratios and analyses of n-alkanes). It was assessed if these methods were sufficient for the initial steps in identifying sources of PAHs in selected samples, and if they could be used for decision-making purposes. Point- and non-point sources were identified by applying the three methods and it could be shown that these relatively simple methods are sufficient in determining the primary source. In a last step of this study two soils (one before the confluence of the Mosel and Saar rivers and one after the confluence), and one sediment of the Mosel River were evaluated by investigating the mutagenic potential of the soils and the sediment with a fluctuation version of the Ames-test. The study showed that coal bearing soils at the Mosel River do not exhibit a greater mutagenic potential than other soils or sediments without coal particles.
Resumo:
Systemic risk is the protagonist of the recent financial crisis. This thesis proposes a definition and a propagation mechanism for systemic risk. Risk management has a direct linkage with capital management, when addressing the question that the risk handled by a financial institution is compatible with the amount of equity available. This thesis proposes a risk management of liquid market variables, which compose the assets of a bank, based on the statistical tool of PCA. The principal component analysis will define the PCR, or Principal Components of Risk. Such definition of Risk will be adopted to test if the risk represented by PCR is explanatory of the movements of equity and/or debt for the banks included in the in the index Itraxx financial senior: the results of these regressions will be compared with a formal Capital Adequacy test in order to assess the financial soundness of the main financial European institutions.
Resumo:
Food Security has become an important issue in the international debate, particularly during the latest economic crisis. It relevant issue also for the Mediterranean Countries (MCs), particularly those of the southern shore, as they are is facing complex economic and social changes. On the one hand there is the necessity to satisfy the increasing and changing food demand of the growing population; on the other hand it is important to promote economic growth and adjust the agricultural production to food demand in a sustainable perspective. The assessment of food security conditions is a challenging task due to the multi-dimensional nature and complexity of the matter. Many papers in the scientific literature focus on the nutritional aspects of food security, while its economic issues have been addressed less frequently and only in recent times. Thus, the main objective of the research is to assess food (in)security conditions in the MCs. The study intends to identify and implement appropriate theoretical concepts and methodological tools to be used in the assessment of food security, with a particular emphasis on its economic dimension within MCs. The study follows a composite methodological approach, based on the identification and selection of a number of relevant variables, a refined set of indicators is identified by means of a two-step Principal Component Analysis applied to 90 countries and the PCA findings have been studied with particular attention to the MCs food security situation. The results of the study show that MCs have an higher economic development compared to low-income countries, however the economic and social disparities of this area show vulnerability to food (in)security, due to: dependency on food imports, lack of infrastructure and agriculture investment, climate condition and political stability and inefficiency. In conclusion, the main policy implications of food (in)security conditions in MCs are discussed.
Resumo:
A critical point in the analysis of ground displacements time series is the development of data driven methods that allow the different sources that generate the observed displacements to be discerned and characterised. A widely used multivariate statistical technique is the Principal Component Analysis (PCA), which allows reducing the dimensionality of the data space maintaining most of the variance of the dataset explained. Anyway, PCA does not perform well in finding the solution to the so-called Blind Source Separation (BSS) problem, i.e. in recovering and separating the original sources that generated the observed data. This is mainly due to the assumptions on which PCA relies: it looks for a new Euclidean space where the projected data are uncorrelated. The Independent Component Analysis (ICA) is a popular technique adopted to approach this problem. However, the independence condition is not easy to impose, and it is often necessary to introduce some approximations. To work around this problem, I use a variational bayesian ICA (vbICA) method, which models the probability density function (pdf) of each source signal using a mix of Gaussian distributions. This technique allows for more flexibility in the description of the pdf of the sources, giving a more reliable estimate of them. Here I present the application of the vbICA technique to GPS position time series. First, I use vbICA on synthetic data that simulate a seismic cycle (interseismic + coseismic + postseismic + seasonal + noise) and a volcanic source, and I study the ability of the algorithm to recover the original (known) sources of deformation. Secondly, I apply vbICA to different tectonically active scenarios, such as the 2009 L'Aquila (central Italy) earthquake, the 2012 Emilia (northern Italy) seismic sequence, and the 2006 Guerrero (Mexico) Slow Slip Event (SSE).
Resumo:
Il presente lavoro si compone di tre capitoli, tra loro autonomi e allo stesso tempo intrinsecamente collegati. Nel primo capitolo si è voluto offrire una panoramica dello scenario agroalimentare italiano e della sua rilevanza nel sistema economico nazionale. Per fare ciò si è partiti da una disamina del contesto economico mondiale per poi centrare il discorso sull’andamento congiunturale dell’agroalimentare nazionale, analizzato secondo i principali indicatori macroeconomici. Successivamente vengono presentati gli attori del sistema agroalimentare, rilevando per ciascuno di essi le proprie specificità e tendenze. L’ultima parte del primo capitolo è un focus specifico sul ruolo giocato dall’agroalimentare italiano nel commercio e nei mercati internazionali. Nel secondo capitolo si è approntata una mappatura territoriale e per comparti delle principali specializzazioni commerciali del settore agroalimentare delle regioni italiane. Tramite l'utilizzo di appositi indici di specializzazione si è analizzata la realtà agroalimentare delle regioni italiane, mettendone in evidenza la struttura competitiva e approssimandola tramite l’analisi dei vantaggi comparati di cui gode. Infine, nel terzo capitolo, si è ampliato il campo d'analisi tentando di misurare il livello di internazionalizzazione delle regioni italiane, non solo in ambito agroalimentare, ma considerando l'intero sistema territoriale regionale. Si è tentato di fare ciò tramite tre strumenti: l’analisi delle componenti principali (PCA o ACP), il Mazziotta-Pareto Index e il Wroclaw taxonomic method. I risultati ottenuti tramite le tre modalità di elaborazione hanno permesso di approfondire la conoscenza del livello di internazionalizzazione registrato dalle regioni italiane, mettendo in luce ulteriori filoni di ricerca della tematica osservata.
Resumo:
Da es bis dato kein spezifisches Instrument gibt, um die Betreuungsbedürfnisse von Patientinnen im Rahmen der gynäkologischen Krebsfrüherkennungsuntersuchung zu erfassen, war es das Ziel der vorliegenden explorativen Studie, eben jene subjektiven Betreuungsbedürfnisse aufzudecken und sie in ein praxistaugliches und messbares Format zu überführen - den Fragebogen „Betreuungsbedürfnisse – Gynäkologische Krebsfrüherkennungsuntersuchung (BB-G KFU)“. Wir stellten hierzu folgende Hypothesen auf: Es ist möglich (a) Betreuungsbedürfnisse zu explorieren und in reliablen Skalen abzubilden, (b) die Wichtigkeit der Betreuungsbedürfnisse in Form einer Wertigkeitsrangfolge abzubilden, (c) Determinanten der Betreuungsbedürfnisse (Alter, Sozialstatus, Familienstand, Gesundheitsbezogene Kontrollüberzeugungen) zu detektieren. Wir entwickelten einen Fragebogen auf der Basis einer ausführlichen systematischen Literaturrecherche, Leitfadeninterviews mit gynäkologischen Patientinnen sowie einer Befragung von 18 Experten. Dieser Fragebogen beinhaltete 58 Arzt bezogene Betreuungsbedürfnisse-Items, 12 Arzthelferinnen bezogene Betreuungsbedürfnisse-Items und 21 Praxisorganisation und Praxisstruktur bezogene Betreuungsbedürfnisse-Items. Die Probandinnen bewerteten die Wichtigkeit der Erfüllung jedes Items anhand einer fünfstufigen Antwortskala im Likert-Format (1 = nicht wichtig, 5 = sehr wichtig). Zudem wurden soziodemografische Daten sowie gesundheitsbezogene Kontrollüberzeugungen der Probandinnen erhoben. Im Sinne einer multizentrisch angelegten Querschnittstudie wurde der Fragebogen an 1.000 Patientinnen in zehn gynäkologischen Praxen in drei deutschen Bundesländern ausgegeben. Insgesamt erhielten wir 965 ausgefüllte Fragebögen zurück. Mittels deskriptiver Statistiken konnten die soziodemografischen Daten sowie die einzelnen Betreuungsbedürfnisse-Items ausgewertet werden. Zur Entwicklung reliabler Betreuungsbedürfnis-Skalen wurde der Datensatz einer Hauptkomponentenanalyse (PCA mit Varimax-Rotation) unterzogen. Auf diesem Wege konnte ein Erfassungsinstrument (Fragebogen „Betreuungsbedürfnisse – Gynäkologische Krebsfrüherkennungsuntersuchung (BB-G KFU)“) bestehend aus sieben reliablen Betreuungsbedürfnis-Skalen (BB-S) entwickelt werden, welche die psychosozialen Betreuungsbedürfnisse und -wünsche von Patientinnen mit Bezug auf den Gynäkologen (BB-S-A), die Arzthelferin (BB-S-AH) sowie die Praxisstruktur (BB-S-P) abzubilden vermögen: „Bedürfnis nach Information“ (BB-S-A-I), „Bedürfnis nach Respekt und Einfühlungsvermögen im Rahmen der körperlichen Untersuchung“ (BB-S-A-RE), „Bedürfnis nach Zuwendung und Verfügbarkeit“ (BB-S-A-ZV), „Bedürfnis nach Zuwendung und Service“ (BB-S-AH-ZS), „Bedürfnis nach logistischer Unterstützung“ (BB-S-AH-L), „Bedürfnis nach Basisausstattung und Erreichbarkeit“ (BB-S-P-BE) und „Bedürfnis nach Zusatzausstattung“ (BB-S-P-Z). Die durch die drei arztbezogenen Komponenten (bestehend aus 33 Items) aufgeklärte Gesamtvarianz beträgt 40,29%, die der arzthelferinnenbezogenen 2-Komponentenlösung (11 Items) 48,92%, und die Totalvarianz der zwei Dimensionen mit Bezug auf die Praxisstruktur (19 Items) liegt bei 41,68%. Die Reliabilitäten der sieben Skalen sind als akzeptabel bis sehr gut zu bewerten (Cronbachs α = .71 - .89). Anhand der Korrelationen zum KKG (Fragen zu Kontrollüberzeugungen über Krankheit und Gesundheit von Lohaus und Schmitt) konnten erste positive Hinweise auf die Validität des BB-G KFU gefunden werden. Durch den Vergleich der einzelnen Mittelwerte konnte die hierarchische Organisation der Betreuungsbedürfnisse gemäß ihrer Wichtigkeit sichtbar gemacht werden: Die Arbeit zeigt, dass Patientinnen im Rahmen der gynäkologischen KFU der Informationsvermittlung durch den Arzt (BB-S-A-I; M = 1,51; SD = 0,47) wie auch der ärztlichen Zuwendung und Verfügbarkeit (BB-S-A-ZV; M = 1,39; SD = 0,38) in der Wertigkeitsrangfolge einen besonders hohen Platz einräumen. Die Datenanalysen zeigen zudem eine Abhängigkeit der Betreuungsbedürfnisse vom Alter und vom Sozialstatus der Patientinnen, jedoch nicht vom Familienstand und den gesundheitsbezogenen Kontrollüberzeugungen.