778 resultados para predictive algorithm
Resumo:
In computer graphics, global illumination algorithms take into account not only the light that comes directly from the sources, but also the light interreflections. This kind of algorithms produce very realistic images, but at a high computational cost, especially when dealing with complex environments. Parallel computation has been successfully applied to such algorithms in order to make it possible to compute highly-realistic images in a reasonable time. We introduce here a speculation-based parallel solution for a global illumination algorithm in the context of radiosity, in which we have taken advantage of the hierarchical nature of such an algorithm
Resumo:
This paper presents a control strategy for blood glucose(BG) level regulation in type 1 diabetic patients. To design the controller, model-based predictive control scheme has been applied to a newly developed diabetic patient model. The controller is provided with a feedforward loop to improve meal compensation, a gain-scheduling scheme to account for different BG levels, and an asymmetric cost function to reduce hypoglycemic risk. A simulation environment that has been approved for testing of artificial pancreas control algorithms has been used to test the controller. The simulation results show a good controller performance in fasting conditions and meal disturbance rejection, and robustness against model–patient mismatch and errors in meal estimation
Predicting sense of community and participation by applying machine learning to open government data
Resumo:
Community capacity is used to monitor socio-economic development. It is composed of a number of dimensions, which can be measured to understand the possible issues in the implementation of a policy or the outcome of a project targeting a community. Measuring community capacity dimensions is usually expensive and time consuming, requiring locally organised surveys. Therefore, we investigate a technique to estimate them by applying the Random Forests algorithm on secondary open government data. This research focuses on the prediction of measures for two dimensions: sense of community and participation. The most important variables for this prediction were determined. The variables included in the datasets used to train the predictive models complied with two criteria: nationwide availability; sufficiently fine-grained geographic breakdown, i.e. neighbourhood level. The models explained 77% of the sense of community measures and 63% of participation. Due to the low geographic detail of the outcome measures available, further research is required to apply the predictive models to a neighbourhood level. The variables that were found to be more determinant for prediction were only partially in agreement with the factors that, according to the social science literature consulted, are the most influential for sense of community and participation. This finding should be further investigated from a social science perspective, in order to be understood in depth.
Resumo:
The goal of this research was to identify predic- tive psychosocial factors of the subjective quality of life in a group of 60 people, with ages between 19 and 57, from both sexes, included in the program of demobilization and social inclusion of the Pro- grama de la Alta Consejería para la Reintegración Social y Económica de Personas y Grupos Alzados en Armas en Colombia. this research was a predic- tive correlational descriptive study. the Question- naire of optimism/Pessimism was used to assess the optimist or pessimist trend, and, for assess the quality of life, these strategies were combined: a home visit to value the objective quality of life, the Analogous scale of subjective Quality of Life to value satisfaction and well-being, and a general format to collect socio-demographic and juridical information. Results show that some variables as perceived health, optimism, educational level, re- ligious believes, objective quality of life, type of demobilization and years spent in the armed group operating outside the law, are associated to better levels of perceived quality of life. The findings and limitations of the study are discussed.
Resumo:
Resumen tomado de la publicación
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
Diffusion tensor magnetic resonance imaging, which measures directional information of water diffusion in the brain, has emerged as a powerful tool for human brain studies. In this paper, we introduce a new Monte Carlo-based fiber tracking approach to estimate brain connectivity. One of the main characteristics of this approach is that all parameters of the algorithm are automatically determined at each point using the entropy of the eigenvalues of the diffusion tensor. Experimental results show the good performance of the proposed approach
Resumo:
Aquesta tesi està inspirada en els agents naturals per tal de planificar de manera dinàmica la navegació d'un robot diferencial de dues rodes. Les dades dels sistemes de percepció són integrades dins una graella d'ocupació de l'entorn local del robot. La planificació de les trajectòries es fa considerant la configuració desitjada del robot, així com els vértexs més significatius dels obstacles més propers. En el seguiment de les trajectòries s'utilitzen tècniques locals de control predictiu basades en el model, amb horitzons de predicció inferiors a un segon. La metodologia emprada és validada mitjançant nombrosos experiments.
Resumo:
This paper discusses the auditory brainstem response (ABR) testing for infants.
Resumo:
This paper describes the results of an investigation which examined the efficacy of a feedback equalization algorithm incorporated into the Central Institute for the Deaf Wearable Digital Hearing Aid. The study examined whether the feedback equalization would allow for greater usable gains when subjects listened to soft speech signals, and if so, whether or not this would improve speech intelligibility.
Resumo:
An improved algorithm for the generation of gridded window brightness temperatures is presented. The primary data source is the International Satellite Cloud Climatology Project, level B3 data, covering the period from July 1983 to the present. The algorithm rakes window brightness, temperatures from multiple satellites, both geostationary and polar orbiting, which have already been navigated and normalized radiometrically to the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer, and generates 3-hourly global images on a 0.5 degrees by 0.5 degrees latitude-longitude grid. The gridding uses a hierarchical scheme based on spherical kernel estimators. As part of the gridding procedure, the geostationary data are corrected for limb effects using a simple empirical correction to the radiances, from which the corrected temperatures are computed. This is in addition to the application of satellite zenith angle weighting to downweight limb pixels in preference to nearer-nadir pixels. The polar orbiter data are windowed on the target time with temporal weighting to account for the noncontemporaneous nature of the data. Large regions of missing data are interpolated from adjacent processed images using a form of motion compensated interpolation based on the estimation of motion vectors using an hierarchical block matching scheme. Examples are shown of the various stages in the process. Also shown are examples of the usefulness of this type of data in GCM validation.
Resumo:
Modern methods of spawning new technological motifs are not appropriate when it is desired to realize artificial life as an actual real world entity unto itself (Pattee 1995; Brooks 2006; Chalmers 1995). Many fundamental aspects of such a machine are absent in common methods, which generally lack methodologies of construction. In this paper we mix classical and modern studies in order to attempt to realize an artificial life form from first principles. A model of an algorithm is introduced, its methodology of construction is presented, and the fundamental source from which it sprang is discussed.
Resumo:
An algorithm is presented for the generation of molecular models of defective graphene fragments, containing a majority of 6-membered rings with a small number of 5- and 7-membered rings as defects. The structures are generated from an initial random array of points in 2D space, which are then subject to Delaunay triangulation. The dual of the triangulation forms a Voronoi tessellation of polygons with a range of ring sizes. An iterative cycle of refinement, involving deletion and addition of points followed by further triangulation, is performed until the user-defined criteria for the number of defects are met. The array of points and connectivities are then converted to a molecular structure and subject to geometry optimization using a standard molecular modeling package to generate final atomic coordinates. On the basis of molecular mechanics with minimization, this automated method can generate structures, which conform to user-supplied criteria and avoid the potential bias associated with the manual building of structures. One application of the algorithm is the generation of structures for the evaluation of the reactivity of different defect sites. Ab initio electronic structure calculations on a representative structure indicate preferential fluorination close to 5-ring defects.
Resumo:
A new dynamic model of water quality, Q(2), has recently been developed, capable of simulating large branched river systems. This paper describes the application of a generalized sensitivity analysis (GSA) to Q(2) for single reaches of the River Thames in southern England. Focusing on the simulation of dissolved oxygen (DO) (since this may be regarded as a proxy for the overall health of a river); the GSA is used to identify key parameters controlling model behavior and provide a probabilistic procedure for model calibration. It is shown that, in the River Thames at least, it is more important to obtain high quality forcing functions than to obtain improved parameter estimates once approximate values have been estimated. Furthermore, there is a need to ensure reasonable simulation of a range of water quality determinands, since a focus only on DO increases predictive uncertainty in the DO simulations. The Q(2) model has been applied here to the River Thames, but it has a broad utility for evaluating other systems in Europe and around the world.