931 resultados para polymeric nanoparticle
Resumo:
Swelling properties of four commercial anion-exchange membranes with different structure have been analyzed in several hydro-organic media. With this target, the liquid uptake and the surface expansion of the membranes in contact with different pure liquids, water and alcohols (methanol, ethanol and 1-propanol), and with water alcohol mixtures with different concentrations have been experimentally determined in presence and in absence of an alkaline medium (LiOH, NaOH and KOH of different concentrations). The alkali-metal doping effect on the membrane water uptake has also been investigated, analyzing the influence of the hydroxide concentration and the presence of an alcohol in the doping solution. The results show that the membrane structure plays an essential role in the influence that alcohol nature and alkaline media has on the selective properties of the membrane. The heterogeneous membranes, with lower density, show higher liquid uptakes and dimensional changes than the homogeneous membranes, regardless of the doping conditions. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To evaluate the efficacy and safety of methotrexate (MTX) nanoparticles in pediatric patients with inflammatory bowel disease (IBD). Methods: In this randomized, open-label clinical study, 28 pediatric patients with moderate to severe IBD were randomly assigned to treatment (MTX nanoparticles,15 mg/week) or control (azathioprine, AZA, 2 mg/kg/day) group. Nanoparticles were synthesized by adding calcium chloride to sodium alginate solution containing MTX, and was further treated with poly-L-lysine aqueous solution. The nanoparticles were evaluated for particle size, zeta potential and drug encapsulation efficacy. Erythrocyte sedimentation rate, C-reactive protein, aspartate aminotransferase, alanine transaminase, and disease activity scores were used to assess IBD remission. Results: Nanoparticle size, zeta potential and encapsulation efficacy were 164.4 ± 6.9 nm, -32.6 ± 3.7 mV, and 97.8 ± 4.2 %, respectively. After 12 weeks of therapy, the mean Pediatric Crohn\'s Disease Activity Index (PCDAI) scores for control and treatment groups were 22.3 ± 2.14 and 16.8 ± 1.87, respectively, while mean Pediatric Ulcerative Colitis Activity (PUCAI) Index scores were 24.3 ± 1.47 and 18.7 ± 1.92, respectively. Eight patients in the treatment and five patients in the control group achieved remission. Biochemical parameters varied significantly between the groups. Conclusion: MTX nanoparticles are safe and more effective than standard first-line IBD therapy. However, further studies are required to determine the suitability of the formulation for therapeutic use.
Resumo:
Purpose: To improve the effectiveness and reduce the systemic side effects of methylprednisolone in traumatic spinal injuries, its polymeric implants were prepared using chitosan and sodium alginate as the biocompatible polymers. Methods: Implants of methylprednisolone sodium succinate (MPSS) were prepared by molding the drug-loaded polymeric mass obtained after ionotropic gelation method. The prepared implants were evaluated for drug loading, in vitro drug release and in vivo performance in traumatic spinal-injury rat model with paraplegia. Results: All the implant formulations were light pale solid matrix with smooth texture. Implants showed 86.56 ± 2.07 % drug loading. Drug release was 89.29 ± 1.25 % at the end of 7 days. Motor function was evaluated in traumatic spinal injury-induced rats in terms of its movement on the horizontal bar. At the end of 7 days, the test group showed the activity score (4.75 ± 0.02) slightly higher than that of standard (4.62 ± 0.25), but the difference was not statistically different (p > 0.05). Conclusion: MPSS-loaded implants produces good recovery in traumatic spinal-injury rats.
Resumo:
This dissertation is related to the studies of functionalized nanoparticles for self-assembly and as controlled drug delivery system. The whole topic is composed of two parts. In the first part, the research was conducted to design and synthesize a new type of ionic peptide-functionalized copolymer conjugates for self-assembly into nanoparticle fibers and 3D scaffolds with the ability of multi-drug loading and governing the release rate of each drug for tissue engineering. The self-assembly study confirmed that such peptide-functionalized amphiphilic copolymers underwent different self-assembly behavior. The bigger nanoparticles were more easily assembled into nanoparticle fibers and 3D scaffolds with larger pore size, while the smaller nanoparticle underwent faster self-assembly to form more compact 3D scaffolds with smaller porosity but more stable structure. Controlled release studies confirmed the ability of governing simultaneous release of different model drugs with independent release rate from a same scaffold. Cytotoxicity tests showed that all synthesized peptides, copolymers and peptide-copolymer conjugates were biocompatible with SW-620 cell lines and NIH3T3 cell lines. This new type of self-assembled scaffolds combined the advantages of peptide nanofibers and versatile controlled release of polymeric nanoparticles to achieve simultaneous multi-drug loading and controlled release of each drug, uniform distribution and flexibility of hydrogel scaffolds. The investigations in second part were first to design and synthesize organic biocide-loaded nanoparticles for low-leaching wood preservation using a cost-effective one-pot method to synthesize amphiphilic chitosan-g-PMMA nanoparticles loading with ~25-28 wt.% of the fungicide tebuconazole with particle size of ~100 nm diameter by FESEM. FESEM analysis confirmed efficient penetration of nanoparticles throughout the treated wooden stake with dimension of 19 × 19 × 455 mm^3. Leaching studies showed that biocide introduced into sapwood via nanoparticles leached only ~9% compared with the amount leached from tebuconazole solution-treated control, while soil jar tests showed that the nanoparticle-treated wood blocks were effectively protected from biological decay tested against G. trabeum, a brown rot fungus. Copper oxide nanoparticles with and without polymer stabilizers were also investigated to use as inorganic wood preservatives to clarify the factor affecting copper leaching from treated wood. Copper oxide nanoparticles with uniform diameters of ~10 nm and ~50 nm were prepared, and the leachates from southern pine sapwood treated with these nanoparticles were analyzed. It was found by TEM and EDS analysis that significant numbers of nanoparticles leached from the treated wood. The 50 nm nanoparticles leached slightly less than a soluble copper salt control, but 10 nm nanoparticles leached substantially more than the control. The effect of polymer stabilizers on nanoparticle leaching was also investigated. Results showed that polymer stabilizers increased leaching. The trends showed that nanoparticle size was a major factor in copper leaching.
Resumo:
Brain is one of the safe sanctuaries for HIV and, in turn, continuously supplies active viruses to the periphery. Additionally, HIV infection in brain results in several mild-to-severe neuro-immunological complications termed neuroAIDS. One-tenth of HIV-infected population is addicted to recreational drugs such as opiates, alcohol, nicotine, marijuana, etc. which share common target-areas in the brain with HIV. Interestingly, intensity of neuropathogenesis is remarkably enhanced due to exposure of recreational drugs during HIV infection. Current treatments to alleviate either the individual or synergistic effects of abusive drugs and HIV on neuronal modulations are less effective at CNS level, basically due to impermeability of therapeutic molecules across blood-brain barrier (BBB). Despite exciting advancement of nanotechnology in drug delivery, existing nanovehicles such as dendrimers, polymers, micelles, etc. suffer from the lack of adequate BBB penetrability before the drugs are engulfed by the reticuloendothelial system cells as well as the uncertainty that if and when the nanocarrier reaches the brain. Therefore, in order to develop a fast, target-specific, safe, and effective approach for brain delivery of anti-addiction, anti-viral and neuroprotective drugs, we exploited the potential of magnetic nanoparticles (MNPs) which, in recent years, has attracted significant importance in biomedical applications. We hypothesize that under the influence of external (non-invasive) magnetic force, MNPs can deliver these drugs across BBB in most effective manner. Accordingly, in this dissertation, I delineated the pharmacokinetics and dynamics of MNPs bound anti-opioid, anti-HIV and neuroprotective drugs for delivery in brain. I have developed a liposome-based novel magnetized nanovehicle which, under the influence of external magnetic forces, can transmigrate and effectively deliver drugs across BBB without compromising its integrity. It is expected that the developed nanoformulations may be of high therapeutic significance for neuroAIDS and for drug addiction as well.
Resumo:
A family of bulk and SBA-15 supported peroxo niobic acid sols were prepared by peptisation of niobic acid precipitates with H2O2 as heterogeneous catalysts for aqueous phase glucose and fructose conversion to 5-hydroxymethylfurfural (5-HMF). Niobic acid nanoparticles possess a high density of Brønsted and Lewis acid sites, conferring good activity towards glucose and fructose conversion, albeit with modest 5-HMF yields under mild reaction conditions (100 °C). Thermally-induced niobia crystallisation suppresses solid acidity and activity. Nanoparticulate niobic acid dispersed over SBA-15 exhibits pure Brønsted acidity and an enhanced Turnover Frequency for fructose dehydration.
Resumo:
Thesis (Master, Chemical Engineering) -- Queen's University, 2016-08-16 04:58:55.749
Resumo:
This doctorate focused on the development of dense polymeric membranes for carbon capture, mostly in post combustion applications, and for natural gas sweetening. The work was supported by the European Project NANOMEMC2 funded under H2020 program. Different materials have been investigated, that rely on two main transport mechanisms: the solution-diffusion and the facilitated transport. In both cases, proper nano-fillers have been added to the matrix, in order to boost the mechanical and permselective properties of the membranes. Facilitated transport membranes were based on the use of was polyvinylamine (PVAm), as main matrix with fixed-site carriers, and L-Arginine as mobile carrier; the filler, used mostly as reinforcer, was carboxymethylated nanocellulose (cNFC). Humid test showed interesting results, and especially the blend made of PVAm/cNFC/Arg in weight ratio 27,5/27,5/45 crossed the Robeson CO2/N2 upper bound, representing current state of the art membranes, with a CO2 permeability of 271 Barrer and CO2/N2 selectivity of 70. Solution diffusion membranes were based on Pebax®2533 matrix which was added with three different graphene oxide (GO)-based materials, namely pristine GO, Porous Graphene Oxide (PGO) and a GO functionalized with polyetheramine (PEAGO). All of them provided a modest but clear increment of permeability of the Pebax matrix, from plus 2% (GO) to plus 8% (PGO), with no change in selectivity. The gas tested with this type of composites were CO2 and N2, for Post combustion capture applications. Pebax®2533 was also chemically modified, obtaining the product called “Benzoyl-P2533”, that was fully characterized, and tested in term of permeation using five gas: CO2, N2, CH4, O2, and He. Modified material showed an increment of the overall permeability of the material of a fair 10% for all gases tested, apart from helium, that increased of almost 50%.
Resumo:
The possibility to control molar mass and termination of the growing chain is fundamental to create well-defined, reproducible materials. For this reason, in order to apply polydithienopyrrole (PDTP) as organic conjugated polymer, the possibility of controlled polymerization needs to be verified. Another aspect that is still not completely explored is bound to the optical activity of the PDTP, which bearing appropriate substituents may adopt a helical conformation. The configuration of the helix, built up from achiral co-monomers, can be established in an enantiopure way by using only a small percentage of the chiral monomer co-polymerized with achiral co-monomer. The effect, called “sergeants and soldiers effect”, is expressed by the nonlinear increase of the chiral response vs the ratio of the chiral co-monomer used for the polymerization. To date, this effect is still not completely explored for PDTP. In this framework the project will investigate, firstly, the possibility to obtain a controlled polymerization of PDTP. Then, monomers with different side chains and organometallic functions will be screened for a CTCP-type polymerization. Also a Lewis-acid based cationic polymerization will be performed. Moreover the chemical derivatization of dithienopyrrole DTP is explored: the research is going to concern also block copolymers, built up by DTP and monomers of different nature. The research will be extended also to the investigation of optically active derivates of PDTP, using a chiral monomer for the synthesis. The possibility to develop a supramolecular distribution of the polymeric chains, together with the “sergeants and soldiers effect” will be checked investigating a series of polymers with increasing amounts of chiral monomer.
Resumo:
Boron is an element essential for various biological processes, nevertheless at high concentration it can cause health issues in both plants and animals, thus making boron a pollutant element. Low cost and effective polymeric adsorbents capable of removing boron in aqueous solution at neutral pH were prepared for this purpose. The adsorbent selectivity towards boron was conferred taking advantage of the interaction between boric acid and the alcoholic groups of N-methyl-D-Glucamine, which are able to form specific complexes. Two different kinds of devices were produced and tested: cross-linked chitosan hydrogel beads (CCBMG) and PVA/chitosan membranes, the latter taking advantage of scCO2-assisted phase inversion technique. The capability of the adsorbents to be regenerated and to allow recovery of boric acid from a solution emulating the concentration of boric acid in seawater were evaluated.
Resumo:
Electrospinning is the most common and industrially scalable technique for the production of polymeric nanofibers. Currently, nanocomposites are drawing much interest for their excellent properties in terms of flexibility, electrical conductivity and high surface area, which enhances the interaction with the surrounding environment. The objective of this thesis was the optimization of different electrospinning setups for the production of nanostructured polymeric composites using graphene-related materials as nanofillers. Such composites were obtained using different polymers as matrix (polyamide 6, polyinylidene fluoride and polylactic acid) that were selected and combined with the appropriate reinforcements based on their properties and their interest for specific applications. Moreover, this study highlighted the possibility to tune the morphology and size of the produced nanofibers by the addition of appropriate nanofillers even in low amounts. The addition of only 0.5% of GO allowed the production of smooth nanofibers with diameters up to 75% thinner (in the case of PLA) than the ones obtained from the pristine polymer. PVdF was charged with GO to produce triboelectric materials that can be exploited in a wearable nanogenerator for the conversion of human motion energy in electrical energy. The addition of GO improved the open-circuit voltage and power-output of a generator prototype by 3.5 times. Electrospun PA6 membranes were coated with rGO using a simple two-step technique to produce conductive textiles for wearable electronic applications. The sheet resistance of the produced materials was measured in approximately 500 Ω/sq and their resistance to washing and bending was successfully tested. These materials could be exploited as strain sensors or heating elements in smart textiles. PLA was co-electrospun with GO and cellulose nanofibers to produce high-surface area and porosity mats that could be exploited for the production of functionalized highly selective adsorption membranes with low pressure drops.
Resumo:
Among all, the application of nanomaterials in biomedical research and most recently in the environmental one has opened the fields of nanomedicine and nanoremediation. Sensing methods based on fluorescence optical probe are generally requested for their selectivity, sensitivity. However, most imaging methods in literature rely on a fluorescent covalent labelling of the system. Therefore, the main aim of this project was to synthetise a biocompatible fluorogenic hyaluronan probe (HA) polymer functionalised with a rhomadine B (RB) moieties and study its behaviour as an optical probe with different materials with microscopy techniques. A derivatization of HA with RB (HA-RB) was successfully obtained providing a photophysical characterization showing a particular fluorescence mechanism of the probe. Firstly, we tested the interaction with different lab-grade micro and nanoplastics in water. Thanks to the peculiar photophysical behaviour of the probe nanoplastics can be detected with confocal microscopy and more interestingly their nature can be discriminated based on the fluorescence lifetime decay with FLIM microscopy. After, the interaction of a model plant derived metabolic enzyme GAPC1 undergoing oxidative-triggered aggregation was explored with the HA-RB. We highlighted the probe interaction with the protein even at early stage of the kinetic. Moreover, nanoparticle tracking analysis (NTA) experiment demonstrates that the probe is in fact able to interact with the small pre-aggregates in the early stage of the aggregation kinetic. Ultimately, we focused on the possibility to apply the probe in a super resolution microscopy technique, PALM, exploiting its aspecific interaction to characterize the surface topography of PTFE polydisperse microplastics. Optimal conditions were reached at high concentration of the probe (70 nM) where 0.5-5 nM is always advisable for this technique. Thanks to the polymeric nature and fluorescence mechanism of the probe, this technique was able to reveal features of PTFE surface under the diffraction limit (< 250 nm).
Resumo:
The relationship between catalytic properties and the nature of the active phase is well-established, with increased presence typically leading to enhanced catalysis. However, the costs associated with acquiring and processing these metals can become economically and environmentally unsustainable for global industries. Thus, there is potential for a paradigm shift towards utilizing polymeric ligands or other polymeric systems to modulate and enhance catalytic performance. This alternative approach has the potential to reduce the requisite amount of active phase while preserving effective catalytic activity. Such a strategy could yield substantial benefits from both economic and environmental perspectives. The primary objective of this research is to examine the influence of polymeric hydro-soluble ligands on the final properties, such as size and dispersion of the active phase, as well as the catalytic activity, encompassing conversion, selectivity towards desired products, and stability, of colloidal gold nanoparticles supported on active carbon. The goal is to elucidate the impact of polymers systematically, offering a toolbox for fine-tuning catalytic performances from the initial stages of catalyst design. Moreover, investigating the potential to augment conversion and selectivity in specific reactions through tailored polymeric ligands holds promise for reshaping catalyst preparation methodologies, thereby fostering the development of more economically sustainable materials.