988 resultados para platelet distribution width
Resumo:
Abstract is not available.
Resumo:
An exact solution for the stresses in a transversely isotropic infinite thick plate having a circular hole and subjected to axisymmetric uniformly distributed load on the plane surfaces has been given. The solution is in the form of Fourier-Bessel series and integrals. Numerical results for the stresses are given using the elastic constants for magnesium, and are compared with the isotropic case.
Resumo:
The sequence distribution studies on the acrylonitrile-methylmethacrylate copolymer of high methylmethacrylate (M) content (30%
Resumo:
The transmitted signal is assumed to consist of a close succession of rectangular pulses of equal width. A matched filter scheme is employed and a theory is developed for a computer-aided optimization of the envelope of monotone compact signals for maximum rejection of dense clutter of any given distribution in range. Specific results are presented and indeterminate cases are discussed.
Resumo:
BACKGROUND Chikungunya and dengue infections are spatio-temporally related. The current review aims to determine the geographic limits of chikungunya, dengue and the principal mosquito vectors for both viruses and to synthesise current epidemiological understanding of their co-distribution. METHODS Three biomedical databases (PubMed, Scopus and Web of Science) were searched from their inception until May 2015 for studies that reported concurrent detection of chikungunya and dengue viruses in the same patient. Additionally, data from WHO, CDC and Healthmap alerts were extracted to create up-to-date global distribution maps for both dengue and chikungunya. RESULTS Evidence for chikungunya-dengue co-infection has been found in Angola, Gabon, India, Madagascar, Malaysia, Myanmar, Nigeria, Saint Martin, Singapore, Sri Lanka, Tanzania, Thailand and Yemen; these constitute only 13 out of the 98 countries/territories where both chikungunya and dengue epidemic/endemic transmission have been reported. CONCLUSIONS Understanding the true extent of chikungunya-dengue co-infection is hampered by current diagnosis largely based on their similar symptoms. Heightened awareness of chikungunya among the public and public health practitioners in the advent of the ongoing outbreak in the Americas can be expected to improve diagnostic rigour. Maps generated from the newly compiled lists of the geographic distribution of both pathogens and vectors represent the current geographical limits of chikungunya and dengue, as well as the countries/territories at risk of future incursion by both viruses. These describe regions of co-endemicity in which lab-based diagnosis of suspected cases is of higher priority.
Resumo:
In the field of workplace air quality, measuring and analyzing the size distribution of airborne particles to identify their sources and apportion their contribution has become widely accepted, however, the driving factors that influence this parameter, particularly for nanoparticles (< 100 nm), have not been thoroughly determined. Identification of driving factors, and in turn, general trends in size distribution of emitted particles would facilitate the prediction of nanoparticles’ emission behavior and significantly contribute to their exposure assessment. In this study, a comprehensive analysis of the particle number size distribution data, with a particular focus on the ultrafine size range of synthetic clay particles emitted from a jet milling machine was conducted using the multi-lognormal fitting method. The results showed relatively high contribution of nanoparticles to the emissions in many of the tested cases, and also, that both surface treatment and feed rate of the machine are significant factors influencing the size distribution of the emitted particles of this size. In particular, applying surface treatments and increasing the machine feed rate have the similar effect of reducing the size of the particles, however, no general trend was found in variations of size distribution across different surface treatments and feed rates. The findings of our study demonstrate that for this process and other activities, where no general trend is found in the size distribution of the emitted airborne particles due to dissimilar effects of the driving factors, each case must be treated separately in terms of workplace exposure assessment and regulations.
Resumo:
Platelet endothelial cell adhesion molecule 1 (PECAM-1) (CD31), a member of the immunoglobulin (Ig) superfamily of cell adhesion molecules with six Ig-like domains, has a range of functions, notably its contributions to leukocyte extravasation during inflammation and in maintaining vascular endothelial integrity. Although PECAM-1 is known to mediate cell adhesion by homophilic binding via domain 1, a number of PECAM-1 heterophilic ligands have been proposed. Here, the possibility that heparin and heparan sulfate (HS) are ligands for PECAM-1 was reinvestigated. The extracellular domain of PECAM-1 was expressed first as a fusion protein with the Fc region of human IgG1 fused to domain 6 and second with an N-terminal Flag tag on domain 1 (Flag-PECAM-1). Both proteins bound heparin immobilized on a biosensor chip in surface plasmon resonance (SPR) binding experiments. Binding was pH-sensitive but is easily measured at slightly acidic pH. A series of PECAM-1 domain deletions, prepared in both expression systems, were tested for heparin binding. This revealed that the main heparin-binding site required both domains 2 and 3. Flag-PECAM-1 and a Flag protein containing domains 1-3 bound HS on melanoma cell surfaces, but a Flag protein containing domains 1-2 did not. Heparin oligosaccharides inhibited Flag-PECAM-1 from binding immobilized heparin, with certain structures having greater inhibitory activity than others. Molecular modeling similarly identified the junction of domains 2 and 3 as the heparin-binding site and further revealed the importance of the iduronic acid conformation for binding. PECAM-1 does bind heparin/HS but by a site that is distinct from that required for homophilic binding.
Resumo:
Platelet endothelial cell adhesion molecule 1 (PECAM-1) has many functions, including its roles in leukocyte extravasation as part of the inflammatory response and in the maintenance of vascular integrity through its contribution to endothelial cell−cell adhesion. PECAM-1 has been shown to mediate cell−cell adhesion through homophilic binding events that involve interactions between domain 1 of PECAM-1 molecules on adjacent cells. However, various heterophilic ligands of PECAM-1 have also been proposed. The possible interaction of PECAM-1 with glycosaminoglycans (GAGs) is the focus of this study. The three-dimensional structure of the extracellular immunoglobulin (Ig) domains of PECAM-1 were constructed using homology modeling and threading methods. Potential heparin/heparan sulfate-binding sites were predicted on the basis of their amino acid consensus sequences and a comparison with known structures of sulfate-binding proteins. Heparin and other GAG fragments have been docked to investigate the structural determinants of their protein-binding specificity and selectivity. The modeling has predicted two regions in PECAM-1 that appear to bind heparin oligosaccharides. A high-affinity binding site was located in Ig domains 2 and 3, and evidence for a low-affinity site in Ig domains 5 and 6 was obtained. These GAG-binding regions were distinct from regions involved in PECAM-1 homophilic interactions.
Resumo:
We have shown previously that the Ca2+-specific fluorescent dyes chlortetracycline (CTC) and indo-1/AM can be used to distinguish between prestalk and prespore cells in Dictyostelium discoideum at a very early stage. In the present study, pre- and post-aggregative amoebae of Dictyostelium discoideum were labelled with CTC or indo-1 and their fluorescence monitored after being drawn into a fine glass capillary. The cells rapidly form two zones of Ca2+-CTC or Ca2+-indo-1 fluorescence. Anterior (air side) cells display a high level of fluorescence; the level drops in the middle portion of the capillary and rises again to a lesser extent in the posteriormost cells (oil side). When bounded by air on both sides, the cells display high fluorescence at both ends. When oil is present at both ends of the capillary, there is little fluorescence except for small regions at the ends. These outcomes are evident within a couple of minutes of the start of the experiment and the fluorescence pattern intensifies over the course of time. By using the indicator neutral red, as well as with CTC and indo-1, we show that a band displaying strong fluorescence moves away from the anterior end before stabilizing at the anterior-posterior boundary. We discuss our findings in relation to the role of Ca2+ in cell-type differentiation in Dictyostelium discoideum.
Resumo:
A survey of the marine gastropod genus Conus Linnaeus was conducted along the TamilNadu Coast of India to explore the regional geographic distribution and diversity. The 60 species observed increased the number of Indian Conidae from 77 to 81. Conus imperialis Linne, C. mitratus Hwass in Bruguiere, C. striolatus Kiener and C. violaceus Gmelin are newly recorded from the study area. Conus amadis Gmelin was the most widely distributed species. The highest diversity (48 species) occurred in the Gulf of Mannar, followed by 22 species from northern, six from southern, and five from the Palk Bay regions. We suggest that the rich diversity recorded in the Gulf of Mannar reflects the physical conditions, microhabitats and required resources such as food and shelter that favour the occurrence of the large number of Conus species.
Resumo:
The effect of a particle size distribution on the fractional reaction has been analysed. The analysis shows that for non-isothermal TG the activation energy and frequency factor evaluated from the fractional reaction by conventional method depend on the particle size distribution, and this may lead to a kinetic compensating effect. Particle size distribution may also lead to an erroneous conclusion about the change in the mechanism of reaction.
Resumo:
In aquatic systems, the ability of both the predator and prey to detect each other may be impaired by turbidity. This could lead to significant changes in the trophic interactions in the food web of lakes. Most fish use their vision for predation and the location of prey can be highly influenced by light level and clarity of the water environment. Turbidity is an optical property of water that causes light to be scattered and absorbed by particles and molecules. Turbidity is highly variable in lakes, due to seasonal changes in suspended sediments, algal blooms and wind-driven suspension of sediments especially in shallow waters. There is evidence that human activity has increased erosion leading to increased turbidity in aquatic systems. Turbidity could also play a significant role in distribution of fish. Turbidity could act as a cover for small fish and reduce predation risk. Diel horizontal migration by fish is common in shallow lakes and is considered as consequences of either optimal foraging behaviour for food or as a trade-off between foraging and predator avoidance. In turbid lakes, diel horizontal migration patterns could differ since turbidity can act as a refuge itself and affect the predator-prey interactions. Laboratory experiments were conducted with perch (Perca fluviatilis L.) and white bream (Abramis björkna (L.)) to clarify the effects of turbidity on their feeding. Additionally to clarify the effects of turbidity on predator preying on different types of prey, pikeperch larvae (Sander lucioperca (L.)), Daphnia pulex (Leydig), Sida crystallina (O.F. Müller), and Chaoborus flavicans (Meigen) were used as prey in different experiments. To clarify the role of turbidity in distribution and diel horizontal migration of perch, roach (Rutilus rutilus (L.)) and white bream, field studies were conducted in shallow turbid lakes. A clear and a turbid shallow lake were compared to investigate distribution of perch and roach in these two lakes in a 15-year study period. Feeding efficiency of perch and white bream was not significantly affected with increasing clay turbidity up to 50 NTU. The perch experiments with pikeperch larvae suggested that clay turbidity could act as a refuge especially at turbidity levels higher than 50 NTU. Perch experiments with different prey types suggested that pikeperch larvae probably use turbidity as a refuge better compared to Daphnia. Increase in turbidity probably has stronger affect on perch predating on plant-attached prey. The main findings of the thesis show that turbidity can play a significant role in distribution of fish. Perch and roach could use turbidity as refuge when macrophytes disappear while small perch may also use high turbidity as refuge when macrophytes are present. Floating-leaved macrophytes are probably good refuges for small fish in clay-turbid lakes and provide a certain level of turbidity and not too complex structure for refuge. The results give light to the predator-prey interactions in turbid environments. Turbidity of water should be taken in to account when studying the diel horizontal migrations and distribution of fish in shallow lakes.