927 resultados para plant growth promoting bacteria


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Phosphorus (P) is a major limiting nutrient for plant growth in many soils. Studies in model species have identified genes involved in plant adaptations to low soil P availability. However, little information is available on the genetic bases of these adaptations in vegetable crops. In this respect, sequence data for melon now makes it possible to identify melon orthologues of candidate P responsive genes, and the expression of these genes can be used to explain the diversity in the root system adaptation to low P availability, recently observed in this species. Methodology and Findings: Transcriptional responses to P starvation were studied in nine diverse melon accessions by comparing the expression of eight candidate genes (Cm-PAP10.1, Cm-PAP10.2, Cm-RNS1, Cm-PPCK1, Cm-transferase, Cm-SQD1, Cm-DGD1 and Cm-SPX2) under P replete and P starved conditions. Differences among melon accessions were observed in response to P starvation, including differences in plant morphology, P uptake, P use efficiency (PUE) and gene expression. All studied genes were up regulated under P starvation conditions. Differences in the expression of genes involved in P mobilization and remobilization (Cm-PAP10.1, Cm-PAP10.2 and Cm-RNS1) under P starvation conditions explained part of the differences in P uptake and PUE among melon accessions. The levels of expression of the other studied genes were diverse among melon accessions, but contributed less to the phenotypical response of the accessions. Conclusions: This is the first time that these genes have been described in the context of P starvation responses in melon. There exists significant diversity in gene expression levels and P use efficiency among melon accessions as well as significant correlations between gene expression levels and phenotypical measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sugars in plants, derived from photosynthesis, act as substrates for energy metabolism and the biosynthesis of complex carbohydrates, providing sink tissues with the necessary resources to grow and to develop. In addition, sugars can act as secondary messengers, with the ability to regulate plant growth and development in response to biotic and abiotic stresses. Sugar-signalling networks have the ability to regulate directly the expression of genes and to interact with other signalling pathways. Photosynthate is primarily transported to sink tissues as sucrose via the phloem. Under phosphorus (P) starvation, plants accumulate sugars and starch in their leaves. Increased loading of sucrose to the phloem under P starvation not only functions to relocate carbon resources to the roots, which increases their size relative to the shoot, but also has the potential to initiate sugar-signalling cascades that alter the expression of genes involved in optimizing root biochemistry to acquire soil phosphorus through increased expression and activity of inorganic phosphate transporters, the secretion of acid phosphatases and organic acids to release P from the soil, and the optimization of internal P use. This review looks at the evidence for the involvement of phloem sucrose in co-ordinating plant responses to P starvation at both the transcriptional and physiological levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the last decade, major advances have been made in our understanding of how plants sense, signal, and respond to soil phosphorus (P) availability (Amtmann et al., 2006; White and Hammond, 2008; Nilsson et al., 2010; Yang and Finnegan, 2010; Vance, 2010; George et al., 2011). Previously, we have reviewed the potential for shoot-derived carbohydrate signals to initiate acclimatory responses in roots to low P availability. In this context, these carbohydrates act as systemic plant growth regulators (Hammond and White, 2008). Photosynthate is transported primarily to sink tissues as Suc via the phloem. Under P starvation, plants accumulate sugars and starch in their leaves. Increased loading of Suc to the phloem under P starvation primarily functions to relocate carbon resources to the roots, which increases their size relative to the shoot (Hermans et al., 2006). The translocation of sugars via the phloem also has the potential to initiate sugar signaling cascades that alter the expression of genes involved plant responses to low P availability. These include optimizing root biochemistry to acquire soil P, through increased expression and activity of inorganic phosphate (Pi) transporters, the secretion of acid phosphatases and organic acids to release P from the soil, and the optimization of internal P use (Hammond and White, 2008). Here, we provide an Update to the field of plant signaling responses to low P availability and the interactions with sugar signaling components. Advances in the P signaling pathways and the roles of hormones in signaling plant responses to low P availability are also reviewed, and where possible their interactions with potential sugar signaling pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Aims: Phosphate (Pi) deficiency in soils is a major limiting factor for crop growth worldwide. Plant growth under low Pi conditions correlates with root architectural traits and it may therefore be possible to select these traits for crop improvement. The aim of this study was to characterize root architectural traits, and to test quantitative trait loci (QTL) associated with these traits, under low Pi (LP) and high Pi (HP) availability in Brassica napus. Methods: Root architectural traits were characterized in seedlings of a double haploid (DH) mapping population (n = 190) of B. napus 'Tapidor' x 'Ningyou 7' (TNDH) using high-throughput phenotyping methods. Primary root length (PRL), lateral root length (LRL), lateral root number (LRN), lateral root density (LRD) and biomass traits were measured 12 d post-germination in agar at LP and HP. Key Results: In general, root and biomass traits were highly correlated under LP and HP conditions. 'Ningyou 7' had greater LRL, LRN and LRD than 'Tapidor', at both LP and HP availability, but smaller PRL. A cluster of highly significant QTL for LRN, LRD and biomass traits at LP availability were identified on chromosome A03; QTL for PRL were identified on chromosomes A07 and C06. Conclusions: High-throughput phenotyping of Brassica can be used to identify root architectural traits which correlate with shoot biomass. It is feasible that these traits could be used in crop improvement strategies. The identification of QTL linked to root traits under LP and HP conditions provides further insights on the genetic basis of plant tolerance to P deficiency, and these QTL warrant further dissection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-deficit is a severe abiotic stress and major constraint to wheat productivity with effect on plant growth and development. The objective of this study was to characterize drought tolerant and susceptible spring wheat cultivars on the basis of physiological and yield attributes. The experiment was comprised of two irrigation regimes i.e. irrigated and 65% drought stress and ten wheat cultivars viz. Anmol, Moomal, Sarsabz, Bhittai, Pavon, SKD-1, TD-1, Kiran, Marvi and Mehran. Results indicated significant effect of water stress on stomatal dimension, stomatal conductance, relative leaf water content and grain yield with no effect on stomatal density. The irrigation × cultivars interaction was non-significant for grain yield only. Cultivars like Anmol, Moomal, Bhittai, Sarsabz proved to be drought tolerant with smaller stomatal dimensions, less stomatal conductance and more relative water content under water stress and produced higher grain yield. While decrease in relative water contents and grain yield, and increase in stomatal attributes was observed in drought susceptible cultivars such as Marvi, TD-1 and SKD-1 hence proved to be drought susceptible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many atmospheric constituents besides carbon dioxide (CO2) contribute to global warming, and it is common to compare their influence on climate in terms of radiative forcing, which measures their impact on the planetary energy budget. A number of recent studies have shown that many radiatively active constituents also have important impacts on the physiological functioning of ecosystems, and thus the ‘ecosystem services’ that humankind relies upon. CO2 increases have most probably increased river runoff and had generally positive impacts on plant growth where nutrients are non-limiting, whereas increases in near-surface ozone (O3) are very detrimental to plant productivity. Atmospheric aerosols increase the fraction of surface diffuse light, which is beneficial for plant growth. To illustrate these differences, we present the impact on net primary productivity and runoff of higher CO2, higher near-surface O3, and lower sulphate aerosols, and for equivalent changes in radiative forcing.We compare this with the impact of climate change alone, arising, for example, from a physiologically inactive gas such as methane (CH4). For equivalent levels of change in radiative forcing, we show that the combined climate and physiological impacts of these individual agents vary markedly and in some cases actually differ in sign. This study highlights the need to develop more informative metrics of the impact of changing atmospheric constituents that go beyond simple radiative forcing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During glacial periods, dust deposition rates and inferred atmospheric concentrations were globally much higher than present. According to recent model results, the large enhancement of atmospheric dust content at the last glacial maximum (LGM) can be explained only if increases in the potential dust source areas are taken into account. Such increases are to be expected, due to effects of low precipitation and low atmospheric (CO2) on plant growth. Here the modelled three-dimensional dust fields from Mahowald et al. and modelled seasonally varying surface-albedo fields derived in a parallel manner, are used to quantify the mean radiative forcing due to modern (non-anthropogenic) and LGM dust. The effect of mineralogical provenance on the radiative properties of the dust is taken into account, as is the range of optical properties associated with uncertainties about the mixing state of the dust particles. The high-latitude (poleward of 45°) mean change in forcing (LGM minus modern) is estimated to be small (–0.9 to +0.2 W m–2), especially when compared to nearly –20 W m–2 due to reflection from the extended ice sheets. Although the net effect of dust over ice sheets is a positive forcing (warming), much of the simulated high-latitude dust was not over the ice sheets, but over unglaciated regions close to the expanded dust source region in central Asia. In the tropics the change in forcing is estimated to be overall negative, and of similarly large magnitude (–2.2 to –3.2 W m–2) to the radiative cooling effect of low atmospheric (CO2). Thus, the largest long-term climatic effect of the LGM dust is likely to have been a cooling of the tropics. Low tropical sea-surface temperatures, low atmospheric (CO2) and high atmospheric dust loading may be mutually reinforcing due to multiple positive feedbacks, including the negative radiative forcing effect of dust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of ethylene in regulating organ senescence in Arabidopsis has been investigated by studying the development of mutants that have an attenu- ated capacity to perceive the gas. The onset of leaf senescence and floral organ abscission was delayed in the ethylene-insensitive mutant etr1. The photosynthetic life span of rosette leaves was similarly extended in the gain- of-function mutant ers2, and this mutant also exhibited a delay in the timing of pod dehiscence primarily as a con- sequence of an extension in the final stages of senescence. A detailed analysis of yield revealed that whilst thousand grain weight was increased, by as much as 20 %, in etr1, ein4, and the loss-of-function mutant etr2, only the latter showed a significant increase in total weight of seeds produced per plant. The other studied mutants exhibited a reduction in total seed yield of almost 40 %. These observations are discussed in the context of the possible role of ethylene in regulating organ senescence and their significance in the breeding of crop plants with enhanced phenotypic characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ochre is an iron oxyhydroxide-rich waste that accumulates in water bodies associated with disused mines. Laboratory experiments were conducted to examine the potential of four different ochres to be used as remedial agents for As contaminated soils. The ochres removed As from solution (200 and 500 mg L−1) in adsorption experiments at pH 3 and 8 and, when added to As contaminated soil (5% w/w) significantly reduced As release to solution. In both these experiments the highest surface area ochres performed best. The impact of ochre amendments on uptake of As from soil by plants and humans and release of As to ground water was assessed in a year-long incubation study. Ochres increased soil pH and reduced CaCl2 extractable As but had no consistent effect on plant growth, plant As uptake or As extraction in physiologically-based extraction tests. Ochre may be better used for water treatment than soil remediation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In common with many plants native to low P soils, jarrah (Eucalyptus marginata) develops toxicity symptoms upon exposure to elevated phosphorus (P). Jarrah plants can establish arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) associations, along with a non-colonizing symbiosis described recently. AM colonization is known to influence the pattern of expression of genes required for P uptake of host plants and our aim was to investigate this phenomenon in relation to P sensitivity. Therefore, we examined the effect on hosts of the presence of AM and ECM fungi in combination with toxic pulses of P and assessed possible correlations between the induced tolerance and the shoot P concentration. The P transport dynamics of AM (Rhizophagus irregularis and Scutellospora calospora), ECM (Scleroderma sp.), non-colonizing symbiosis (Austroboletus occidentalis), dual mycorrhizal (R. irregularis and Scleroderma sp.), and non-mycorrhizal (NM) seedlings were monitored following two pulses of P. The ECM and A. occidentalis associations significantly enhanced the shoot P content of jarrah plants growing under P-deficient conditions. In addition, S. calospora, A. occidentalis, and Scleroderma sp. all stimulated plant growth significantly. All inoculated plants had significantly lower phytotoxicity symptoms compared to NM controls 7 days after addition of an elevated P dose (30 mg P kg−1 soil). Following exposure to toxicity-inducing levels of P, the shoot P concentration was significantly lower in R. irregularis-inoculated and dually inoculated plants compared to NM controls. Although all inoculated plants had reduced toxicity symptoms and there was a positive linear relationship between rank and shoot P concentration, the protective effect was not necessarily explained by the type of fungal association or the extent of mycorrhizal colonization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Change in morphological and physiological parameters in response to phosphorus (P) supply was studied in 11 perennial herbaceous legume species, six Australian native (Lotus australis, Cullen australasicum, Kennedia prorepens, K. prostrata, Glycine canescens, C. tenax) and five exotic species (Medicago sativa, Lotononis bainesii, Bituminaria bituminosa var albomarginata, Lotus corniculatus, Macroptilium bracteatum). We aimed to identify mechanisms for P acquisition from soil. Plants were grown in sterilised washed river sand; eight levels of P as KH2PO4 ranging from 0 to 384 μg P g−1 soil were applied. Plant growth under low-P conditions strongly correlated with physiological P-use efficiency and/or P-uptake efficiency. Taking all species together, at 6 μg P g−1 soil there was a good correlation between P uptake and both root surface area and total root length. All species had higher amounts of carboxylates in the rhizosphere under a low level of P application. Six of the 11 species increased the fraction of rhizosphere citrate in response to low P, which was accompanied by a reduction in malonate, except L. corniculatus. In addition, species showed different plasticity in response to P-application levels and different strategies in response to P deficiency. Our results show that many of the 11 species have prospects for low-input agroecosystems based on their high P-uptake and P-use efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data from four experimental research projects are presented which have in common that unexpected results caused a change in direction of the research. A plant growth accelerator caused the appearance of white black bean aphids, a synthetic pyrethroid suspected of enhancing aphid reproduction proved to enhance plant growth, a chance conversation with a colleague initiated a search for fungal DNA in aphids, and the accidental invasion of aphid cultures by a parasitoid reversed the aphid population ranking of two Brussels sprout cultivars. This last result led to a whole series of studies on the plant odour preferences of emerging parasitoids which in turn revealed the unexpected phenomenon that chemical cues to the maternal host plant are left with the eggs at oviposition. It is pointed out that, too often, researchers fail to follow up unexpected results because they resist accepting flaws in their hypotheses; also that current application criteria for research funding make it hard to accommodate unexpected findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods used in the restoration of lowland heath vary depending on edaphic factors at a site and need for introduction of ericaceous propagules. This study investigates the effect of some methods on growth of an important ericaceous species, Heather (Calluna vulgaris). It also explores whether success of growth of C. vulgaris in restoration schemes is affected by its degree of colonization by ericoid mycorrhizal fungi (ERM). The success of Heather growth was compared at three sites, a control area of natural heathland and two restoration sites. These were a quarry where soil had been translocated but not chemically manipulated and a site on agricultural land where the top soil had been improved but then either stripped away or acidified prior to attempting heathland restoration. Propagules of C. vulgaris were applied either as turves or as clippings. Results show that clippings produced as dense a cover of C. vulgaris as turves over a period of 13 years and that plants in such swards can exhibit a degree of ERM colonization comparable to that found in mature plants growing in natural heathland. Young (<2 years of age) plants of C. vulgaris had less extensive mycorrhizal colonization of their roots, particularly when growing on restored agricultural soils. A relationship was found between lower levels of mycorrhizal colonization and smaller aboveground plant growth. Success of heathland restoration may be improved by finding means to enhance the rate and extent of mycorrhizal colonization of young C. vulgaris growing in a restoration environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Horticultural science linked with basic studies in biology, chemistry, physics and engineering has laid the foundation for advances in applied knowledge which are at the heart of commercial, environmental and social horticulture. In few disciplines is science more rapidly translated into applicable technologies than in the huge range of man’s activities embraced within horticulture which are discussed in this Trilogy. This chapter surveys the origins of horticultural science developing as an integral part of the 16th century “Scientific Revolution”. It identifies early discoveries during the latter part of the 19th and early 20th centuries which rationalized the control of plant growth, flowering and fruiting and the media in which crops could be cultivated. The products of these discoveries formed the basis on which huge current industries of worldwide significance are founded in fruit, vegetable and ornamental production. More recent examples of the application of horticultural science are used in an explanation of how the integration of plant breeding, crop selection and astute marketing highlighted by the New Zealand industry have retained and expanded the viability of production which supplies huge volumes of fruit into the world’s markets. This is followed by an examination of science applied to tissue and cell culture as an example of technologies which have already produced massive industrial applications but hold the prospect for generating even greater advances in the future. Finally, examples are given of nascent scientific discoveries which hold the prospect for generating horticultural industries with considerable future impact. These include systems modeling and biology, nanotechnology, robotics, automation and electronics, genetics and plant breeding, and more efficient and effective use of resources and the employment of benign microbes. In conclusion there is an estimation of the value of horticultural science to society.