637 resultados para phospholipase A


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Norepinephrine (NE) and angiotensin II (Ang II), by promoting extracellular Ca2+ influx, increase Ca2+/calmodulin-dependent kinase II (CaMKII) activity, leading to activation of mitogen-activated protein kinase (MAPK) and cytosolic phospholipase A2 (cPLA2), resulting in release of arachidonic acid (AA) for prostacyclin synthesis in rabbit vascular smooth muscle cells. However, the mechanism by which CaMKII activates MAPK is unclear. The present study was conducted to determine the contribution of AA and its metabolites as possible mediators of CaMKII-induced MAPK activation by NE, Ang II, and epidermal growth factor (EGF) in vascular smooth muscle cells. NE-, Ang II-, and EGF-stimulated MAPK and cPLA2 were reduced by inhibitors of cytochrome P450 (CYP450) and lipoxygenase but not by cyclooxygenase. NE-, Ang II-, and EGF-induced increases in Ras activity, measured by its translocation to plasma membrane, were abolished by CYP450, lipoxygenase, and farnesyltransferase inhibitors. An AA metabolite of CYP450, 20-hydroxyeicosatetraenoic acid (20-HETE), increased the activities of MAPK and cPLA2 and caused translocation of Ras. These data suggest that activation of MAPK by NE, Ang II, and EGF is mediated by a signaling mechanism involving 20-HETE, which is generated by stimulation of cPLA2 by CaMKII. Activation of Ras/MAPK by 20-HETE amplifies cPLA2 activity and releases additional AA by a positive feedback mechanism. This mechanism of Ras/MAPK activation by 20-HETE may play a central role in the regulation of other cellular signaling molecules involved in cell proliferation and growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

G proteins play a major role in signal transduction upon platelet activation. We have previously reported a patient with impaired agonist-induced aggregation, secretion, arachidonate release, and Ca2+ mobilization. Present studies demonstrated that platelet phospholipase A2 (cytosolic and membrane) activity in the patient was normal. Receptor-mediated activation of glycoprotein (GP) IIb-IIIa complex measured by flow cytometry using antibody PAC-1 was diminished despite normal amounts of GPIIb-IIIa on platelets. Ca2+ release induced by guanosine 5′-[γ-thio]triphosphate (GTP[γS]) was diminished in the patient’s platelets, suggesting a defect distal to agonist receptors. GTPase activity (a function of α-subunit) in platelet membranes was normal in resting state but was diminished compared with normal subjects on stimulation with thrombin, platelet-activating factor, or the thromboxane A2 analog U46619. Binding of 35S-labeled GTP[γS] to platelet membranes was decreased under both basal and thrombin-stimulated states. Iloprost (a stable prostaglandin I2 analog) -induced rise in cAMP (mediated by Gαs) and its inhibition (mediated by Gαi) by thrombin in the patient’s platelet membranes were normal. Immunoblot analysis of Gα subunits in the patient’s platelet membranes showed a decrease in Gαq (<50%) but not Gαi, Gαz, Gα12, and Gα13. These studies provide evidence for a hitherto undescribed defect in human platelet G-protein α-subunit function leading to impaired platelet responses, and they provide further evidence for a major role of Gαq in thrombin-induced responses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two isoforms of the substance P (SP) receptor, differing in the length of the cytoplasmic carboxyl-terminus by ≈8 kDa, have been detected previously in rat salivary glands and other tissues. The binding and functional properties of these two isoforms have been investigated using full-length (407 amino acids) and carboxyl-terminally truncated (324 amino acids) rat SP receptors transfected stably into Chinese hamster ovary cells. Both the full-length and the truncated receptor bound radiolabeled SP with a similar Kd (≈0.1 nM). The average number of high affinity SP binding sites per cell was 1.0 × 105 and 0.3 × 105 for the full-length and the truncated SP receptor, respectively. In both cell lines, SP induced a rapid but transient increase in cytosolic calcium concentration ([Ca2+]i), which consisted of the release of Ca2+ from intracellular stores and the influx of extracellular Ca2+. Both components are dependent on phospholipase C activation. Although the full-length and the truncated receptor utilize the same calcium pathways, they differ in their EC50 values (0.28 nM for the full-length; 0.07 nM for the truncated). These differences in responsiveness may be related to the observed differences in receptor desensitization. The truncated receptor, in contrast to the full-length receptor, does not undergo rapid and long-lasting desensitization. Cells possessing the short isoform of the SP receptor would thus be expected to exhibit a prolonged responsiveness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ETS transcription factors play important roles in hematopoiesis, angiogenesis, and organogenesis during murine development. The ETS genes also have a role in neoplasia, for example in Ewing’s sarcomas and retrovirally induced cancers. The ETS genes encode transcription factors that bind to specific DNA sequences and activate transcription of various cellular and viral genes. To isolate novel ETS target genes, we used two approaches. In the first approach, we isolated genes by the RNA differential display technique. Previously, we have shown that the overexpression of ETS1 and ETS2 genes effects transformation of NIH 3T3 cells and specific transformants produce high levels of the ETS proteins. To isolate ETS1 and ETS2 responsive genes in these transformed cells, we prepared RNA from ETS1, ETS2 transformants, and normal NIH 3T3 cell lines and converted it into cDNA. This cDNA was amplified by PCR and displayed on sequencing gels. The differentially displayed bands were subcloned into plasmid vectors. By Northern blot analysis, several clones showed differential patterns of mRNA expression in the NIH 3T3-, ETS1-, and ETS2-expressing cell lines. Sixteen clones were analyzed by DNA sequence analysis, and 13 of them appeared to be unique because their DNA sequences did not match with any of the known genes present in the gene bank. Three known genes were found to be identical to the CArG box binding factor, phospholipase A2-activating protein, and early growth response 1 (Egr1) genes. In the second approach, to isolate ETS target promoters directly, we performed ETS1 binding with MboI-cleaved genomic DNA in the presence of a specific mAb followed by whole genome PCR. The immune complex-bound ETS binding sites containing DNA fragments were amplified and subcloned into pBluescript and subjected to DNA sequence and computer analysis. We found that, of a large number of clones isolated, 43 represented unique sequences not previously identified. Three clones turned out to contain regulatory sequences derived from human serglycin, preproapolipoprotein C II, and Egr1 genes. The ETS binding sites derived from these three regulatory sequences showed specific binding with recombinant ETS proteins. Of interest, Egr1 was identified by both of these techniques, suggesting strongly that it is indeed an ETS target gene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arabinogalactan proteins (AGPs) are proteoglycans of higher plants, which are implicated in growth and development. We recently have shown that two AGPs, NaAGP1 (from Nicotiana alata styles) and PcAGP1 (from Pyrus communis cell suspension culture), are modified by the addition of a glycosylphosphatidylinositol (GPI) anchor. However, paradoxically, both AGPs were buffer soluble rather than membrane associated. We now show that pear suspension cultured cells also contain membrane-bound GPI-anchored AGPs. This GPI anchor has the minimal core oligosaccharide structure, d-Manα(1–2)-d-Manα(1–6)-d-Manα(1–4)-d-GlcN-inositol, which is consistent with those found in animals, protozoa, and yeast, but with a partial β(1–4)-galactosyl substitution of the 6-linked Man residue, and has a phosphoceramide lipid composed primarily of phytosphingosine and tetracosanoic acid. The secreted form of PcAGP1 contains a truncated GPI lacking the phosphoceramide moiety, suggesting that it is released from the membrane by the action of a phospholipase D. The implications of these findings are discussed in relation to the potential mechanisms by which GPI-anchored AGPs may be involved in signal transduction pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The finding that ADP-ribosylation factor (ARF) can activate phospholipase D has led to debate as to whether ARF recruits coat proteins through direct binding or indirectly by catalytically increasing phosphatidic acid production. Here we test critical aspects of these hypotheses. We find that Golgi membrane phosphatidic acid levels do not rise—in fact they decline—during cell-free budding reactions. We confirm that the level of membrane-bound ARF can be substantially reduced without compromising coat assembly [Ktistakis, N. T., Brown, H. A., Waters, M. G., Sternweis, P. C. & Roth, M. G. (1996) J. Cell Biol. 134, 295–306], but find that under all conditions, ARF is present on the Golgi membrane in molar excess over bound coatomer. These results do not support the possibility that the activation of coat assembly by ARF is purely catalytic, and they are consistent with ARF forming direct interactions with coatomer. We suggest that ARF, like many other G proteins, is a multifunctional protein with roles in trafficking and phospholipid signaling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiac hypertrophy and dilatation can result from stimulation of signal transduction pathways mediated by heterotrimeric G proteins, especially Gq, whose α subunit activates phospholipase Cβ (PLCβ). We now report that transient, modest expression of a hemagglutinin (HA) epitope-tagged, constitutively active mutant of the Gq α subunit (HAα*q) in hearts of transgenic mice is sufficient to induce cardiac hypertrophy and dilatation that continue to progress after the initiating stimulus becomes undetectable. At 2 weeks, HAα*q protein is expressed at less than 50% of endogenous αq/11, and the transgenic hearts are essentially normal morphologically. Although HAα*q protein declines at 4 weeks and is undetectable by 10 weeks, the animals develop cardiac hypertrophy and dilatation and die between 8 and 30 weeks in heart failure. As the pathology develops, endogenous αq/11 rises (2.9-fold in atria; 1.8-fold in ventricles). At 2 weeks, basal PLC activity is increased 9- to 10-fold in atria but not ventricles. By 10 weeks, it is elevated in both, presumably because of the rise in endogenous αq/11. We conclude that the pathological changes initiated by early, transient HAα*q expression are maintained in part by compensatory changes in signal transduction and other pathways. Cyclosporin A (CsA) prevents hypertrophy caused by activation of calcineurin [Molkentin, J. D., Lu, J.-R., Antos, C. L., Markham, B., Richardson, J., Robbins, J., Grant, S. R. & Olson, E. N. (1998) Cell 93, 215–228]. Because HAα*q acts upstream of calcineurin, we hypothesized that HAα*q might initiate additional pathways leading to hypertrophy and dilatation. Treating HAα*q mice with CsA diminished some, but not all, aspects of the hypertrophic phenotype, suggesting that multiple pathways are involved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RGS (regulators of G protein signaling) proteins are GTPase activating proteins that inhibit signaling by heterotrimeric G proteins. All RGS proteins studied to date act on members of the Giα family, but not Gsα or G12α. RGS4 regulates Giα family members and Gqα. RGS2 (G0S8) is exceptional because the G proteins it regulates have not been identified. We report that RGS2 is a selective and potent inhibitor of Gqα function. RGS2 selectively binds Gqα, but not other Gα proteins (Gi, Go, Gs, G12/13) in brain membranes; RGS4 binds Gqα and Giα family members. RGS2 binds purified recombinant Gqα, but not Goα, whereas RGS4 binds either. RGS2 does not stimulate the GTPase activities of Gsα or Giα family members, even at a protein concentration 3000-fold higher than is sufficient to observe effects of RGS4 on Giα family members. In contrast, RGS2 and RGS4 completely inhibit Gq-directed activation of phospholipase C in cell membranes. When reconstituted with phospholipid vesicles, RGS2 is 10-fold more potent than RGS4 in blocking Gqα-directed activation of phospholipase Cβ1. These results identify a clear physiological role for RGS2, and describe the first example of an RGS protein that is a selective inhibitor of Gqα function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Engagement of the mast cell high-affinity receptor for immunoglobulin E (IgE), FcɛRI, induces tyrosine phosphorylation of Syk, a non-receptor tyrosine kinase, that has been demonstrated as critical for degranulation. Herein we describe a synthetic compound, ER-27319, as a potent and selective inhibitor of antigen or anti-IgE-mediated degranulation of rodent and human mast cells. ER-27319 affected neither Lyn kinase activity nor the antigen-induced phosphorylation of the FcɛRI but did effectively inhibit the tyrosine phosphorylation of Syk and thus its activity. As a consequence, tyrosine phosphorylation of phospholipase C-γ1, generation of inositol phosphates, release of arachidonic acid, and secretion of histamine and tumor necrosis factor α were also inhibited. ER-27319 did not inhibit the anti-CD3-induced tyrosine phosphorylation of phospholipase C-γ1 in Jurkat T cells, demonstrating a specificity for Syk-induced signals. In contrast the tyrosine phosphorylation and activation of Syk, induced by in vitro incubation with the phosphorylated immunoreceptor tyrosine-based activation motif (ITAM) of FcɛRI γ subunit or by antigen activation of RBL-2H3 cells, was specifically inhibited by ER-27319. However, when ER-27319 was added to immunoprecipitated Syk, derived from activated cells, no effect was seen on Syk activity. ER-27319 did not inhibit the tyrosine phosphorylation of Syk induced by activation in the presence of Igβ ITAM or the anti-IgM-induced phosphorylation of Syk in human peripheral B cells. Therefore, ER-27319 selectively interferes with the FcɛRI γ phospho-ITAM activation of Syk in vitro and in intact cells. These results confirm the importance of Syk in FcɛRI-mediated responses in mast cells and demonstrate the mast cell selectivity and therapeutic potential of ER-27319 in the treatment of allergic disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Visual transduction in Drosophila is a G protein-coupled phospholipase C-mediated process that leads to depolarization via activation of the transient receptor potential (TRP) calcium channel. Inactivation-no-afterpotential D (INAD) is an adaptor protein containing PDZ domains known to interact with TRP. Immunoprecipitation studies indicate that INAD also binds to eye-specific protein kinase C and the phospholipase C, no-receptor-potential A (NORPA). By overlay assay and site-directed mutagenesis we have defined the essential elements of the NORPA–INAD association and identified three critical residues in the C-terminal tail of NORPA that are required for the interaction. These residues, Phe-Cys-Ala, constitute a novel binding motif distinct from the sequences recognized by the PDZ domain in INAD. To evaluate the functional significance of the INAD–NORPA association in vivo, we generated transgenic flies expressing a modified NORPA, NORPAC1094S, that lacks the INAD interaction. The transgenic animals display a unique electroretinogram phenotype characterized by slow activation and prolonged deactivation. Double mutant analysis suggests a possible inaccessibility of eye-specific protein kinase C to NORPAC1094S, undermining the observed defective deactivation, and that delayed activation may similarly result from NORPAC1094S being unable to localize in close proximity to the TRP channel. We conclude that INAD acts as a scaffold protein that facilitates NORPA–TRP interactions required for gating of the TRP channel in photoreceptor cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enhanced activity of receptor tyrosine kinases such as the PDGF β-receptor and EGF receptor has been implicated as a contributing factor in the development of malignant and nonmalignant proliferative diseases such as cancer and atherosclerosis. Several epidemiological studies suggest that green tea may prevent the development of cancer and atherosclerosis. One of the major constituents of green tea is the polyphenol epigallocathechin-3 gallate (EGCG). In an attempt to offer a possible explanation for the anti-cancer and anti-atherosclerotic activity of EGCG, we examined the effect of EGCG on the PDGF-BB–, EGF-, angiotensin II-, and FCS-induced activation of the 44 kDa and 42 kDa mitogen-activated protein (MAP) kinase isoforms (p44mapk/p42mapk) in cultured vascular smooth muscle cells (VSMCs) from rat aorta. VSMCs were treated with EGCG (1–100 μM) for 24 h and stimulated with the above mentioned agonists for different time periods. Stimulation of the p44mapk/p42mapk was detected by the enhanced Western blotting method using phospho-specific MAP kinase antibodies that recognized the Tyr204-phosphorylated (active) isoforms. Treatment of VSMCs with 10 and 50 μM EGCG resulted in an 80% and a complete inhibition of the PDGF-BB–induced activation of MAP kinase isoforms, respectively. In striking contrast, EGCG (1–100 μM) did not influence MAP kinase activation by EGF, angiotensin II, and FCS. Similarly, the maximal effect of PDGF-BB on the c-fos and egr-1 mRNA expression as well as on intracellular free Ca2+ concentration was completely inhibited in EGCG-treated VSMCs, whereas the effect of EGF was not affected. Quantification of the immunoprecipitated tyrosine-phosphorylated PDGF-Rβ, phosphatidylinositol 3′-kinase, and phospholipase C-γ1 by the enhanced Western blotting method revealed that EGCG treatment effectively inhibits tyrosine phosphorylation of these kinases in VSMCs. Furthermore, we show that spheroid formation of human glioblastoma cells (A172) and colony formation of sis-transfected NIH 3T3 cells in semisolid agar are completely inhibited by 20–50 μM EGCG. Our findings demonstrate that EGCG is a selective inhibitor of the tyrosine phosphorylation of PDGF-Rβ and its downstream signaling pathway. The present findings may partly explain the anti-cancer and anti-atherosclerotic activity of green tea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In RBL-2H3 tumor mast cells, cross-linking the high affinity IgE receptor (FcεRI) with antigen activates cytosolic tyrosine kinases and stimulates Ins(1,4,5)P3 production. Using immune complex phospholipase assays, we show that FcεRI cross-linking activates both PLCγ1 and PLCγ2. Activation is accompanied by the increased phosphorylation of both PLCγ isoforms on serine and tyrosine in antigen-treated cells. We also show that the two PLCγ isoforms have distinct subcellular localizations. PLCγ1 is primarily cytosolic in resting RBL-2H3 cells, with low levels of plasma membrane association. After antigen stimulation, PLCγ1 translocates to the plasma membrane where it associates preferentially with membrane ruffles. In contrast, PLCγ2 is concentrated in a perinuclear region near the Golgi and adjacent to the plasma membrane in resting cells and does not redistribute appreciably after FcεRI cross-linking. The activation of PLCγ1, but not of PLCγ2, is blocked by wortmannin, a PI 3-kinase inhibitor previously shown to block antigen-stimulated ruffling and to inhibit Ins(1,4,5)P3 synthesis. In addition, wortmannin strongly inhibits the antigen-stimulated phosphorylation of both serine and tyrosine residues on PLCγ1 with little inhibition of PLCγ2 phosphorylation. Wortmannin also blocks the antigen-stimulated translocation of PLCγ1 to the plasma membrane. Our results implicate PI 3-kinase in the phosphorylation, translocation, and activation of PLCγ1. Although less abundant than PLCγ2, activated PLCγ1 may be responsible for the bulk of antigen-stimulated Ins(1,4,5)P3 production in RBL-2H3 cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gene targeting techniques and early mouse embryos have been used to produce immortalized fibroblasts genetically deficient in phospholipase C (PLC)-γ1, a ubiquitous tyrosine kinase substrate. Plcg1−/− embryos die at embryonic day 9; however, cells derived from these embryos proliferate as well as cells from Plcg1+/+ embryos. The null cells do grow to a higher saturation density in serum-containing media, as their capacity to spread out is decreased compared with that of wild-type cells. In terms of epidermal growth factor receptor activation and internalization, or growth factor induction of mitogen-activated protein kinase, c-fos, or DNA synthesis in quiescent cells, PLcg1−/− cells respond equivalently to PLcg1+/+ cells. Also, null cells are able to migrate effectively in a wounded monolayer. Therefore, immortalized fibroblasts do not require PLC-γ1 for many responses to growth factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dopamine (DA) inhibition of Na+,K+-ATPase in proximal tubule cells is associated with increased endocytosis of its α and β subunits into early and late endosomes via a clathrin vesicle-dependent pathway. In this report we evaluated intracellular signals that could trigger this mechanism, specifically the role of phosphatidylinositol 3-kinase (PI 3-K), the activation of which initiates vesicular trafficking and targeting of proteins to specific cell compartments. DA stimulated PI 3-K activity in a time- and dose-dependent manner, and this effect was markedly blunted by wortmannin and LY 294002. Endocytosis of the Na+,K+-ATPase α subunit in response to DA was also inhibited in dose-dependent manner by wortmannin and LY 294002. Activation of PI 3-K generally occurs by association with tyrosine kinase receptors. However, in this study immunoprecipitation with a phosphotyrosine antibody did not reveal PI 3-K activity. DA-stimulated endocytosis of Na+,K+-ATPase α subunits required protein kinase C, and the ability of DA to stimulate PI 3-K was blocked by specific protein kinase C inhibitors. Activation of PI 3-K is mediated via the D1 receptor subtype and the sequential activation of phospholipase A2, arachidonic acid, and protein kinase C. The results indicate a key role for activation of PI 3-K in the endocytic sequence that leads to internalization of Na+,K+-ATPase α subunits in response to DA, and suggest a mechanism for the participation of protein kinase C in this process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rat basophilic leukemia (RBL-2H3) cells predominantly express the type II receptor for inositol 1,4,5-trisphosphate (InsP3), which operates as an InsP3-gated calcium channel. In these cells, cross-linking the high-affinity immunoglobulin E receptor (FcεR1) leads to activation of phospholipase C γ isoforms via tyrosine kinase- and phosphatidylinositol 3-kinase-dependent pathways, release of InsP3-sensitive intracellular Ca2+ stores, and a sustained phase of Ca2+ influx. These events are accompanied by a redistribution of type II InsP3 receptors within the endoplasmic reticulum and nuclear envelope, from a diffuse pattern with a few small aggregates in resting cells to large isolated clusters after antigen stimulation. Redistribution of type II InsP3 receptors is also seen after treatment of RBL-2H3 cells with ionomycin or thapsigargin. InsP3 receptor clustering occurs within 5–10 min of stimulus and persists for up to 1 h in the presence of antigen. Receptor clustering is independent of endoplasmic reticulum vesiculation, which occurs only at ionomycin concentrations >1 μM, and maximal clustering responses are dependent on the presence of extracellular calcium. InsP3 receptor aggregation may be a characteristic cellular response to Ca2+-mobilizing ligands, because similar results are seen after activation of phospholipase C-linked G-protein-coupled receptors; cholecystokinin causes type II receptor redistribution in rat pancreatoma AR4–2J cells, and carbachol causes type III receptor redistribution in muscarinic receptor-expressing hamster lung fibroblast E36M3R cells. Stimulation of these three cell types leads to a reduction in InsP3 receptor levels only in AR4–2J cells, indicating that receptor clustering does not correlate with receptor down-regulation. The calcium-dependent aggregation of InsP3 receptors may contribute to the previously observed changes in affinity for InsP3 in the presence of elevated Ca2+ and/or may establish discrete regions within refilled stores with varying capacity to release Ca2+ when a subsequent stimulus results in production of InsP3.