957 resultados para particle size measurement
Influence of organic matter in road deposited particulates in heavy metal accumulation and transport
Resumo:
The research study discussed in the paper investigated the influence of organic matter on heavy metal adsorption for different particle size ranges of build-up solids. Samples collected from road surfaces were assessed for organic matter content, mineral composition, particle size distribution and effective cation exchange capacity. It was found that the organic matter plays a key role in >75µm particles in the adsorption of Zinc, Lead, Nickel and Copper, which are generated by traffic activities. Clay forming minerals and metal oxides of Iron, Aluminium and Manganese was found to be important for heavy metal adsorption to <75µm particles. It was also found that heavy metals adsorbed to organic matter are strongly bound to particles and these metal ions will not be bio-available if the chemical quality of the media remains stable.
Resumo:
The renovation of biomass waste in the form of Mahogany seed waste into bio-fuel as well as activated carbon by fixed bed pyrolysis reactor has been taken into consideration in this study. The mahogany seed in particle form is pyrolyzed in an enormously heated fixed bed reactor with nitrogen as the carrier gas. The reactor is heated from 4000C to 6000C using a external heater in which rice husk and charcoal are used as the heater biomass fuel. Reactor bed temperature, running time and feed particle size have been varied to get the optimum operating conditions of the system. The parameters are found to influence the product yields to a large extent. A maximum liquid and char yield are 49 wt. % and 35 wt. % respectively obtained at a reactor bed temperature 5000C when the running time is 90 minutes. Acquired pyrolyzed oil at these optimal process conditions were analyzed for some of their properties as an alternative fuel. The oil possesses comparable flame temperature, favorable flash point and reasonable viscosity along with somewhat higher density. The kinematic viscosity of the derived fuel is 3.8 cSt and density is 1525 kg/m3. The higher calorific value is found 32.4 MJ/kg which is significantly higher than other biomass derived fuel. Moderate adsorption capacity of the prepared activated carbon in case of methyl blue & tea water was also revealed.
Resumo:
The research study discussed in the paper investigated the adsorption/desorption behaviour of heavy metals commonly deposited on urban road surfaces, namely, Zn, Cu, Cr and Pb for different particle size ranges of solids. The study outcomes, based on field studies and batch experiments confirmed that road deposited solids particles contain a significantly high amount of vacant charge sites with the potential to adsorb additional heavy metals. Kinetic study and adsorption experiments indicated that Cr is the most preferred metal element to associate with solids due to the relatively high electro negativity and high charge density of trivalent cation (Cr3+). However, the relatively low availability of Cr in the urban road environment could influence this behaviour. Comparing total adsorbed metals present in solids particles, it was found that Zn has the highest capacity for adsorption to solids. Desorption experiments confirmed that a low concentration of Cu, Cr and Pb in solids was present in water-soluble and exchangeable form, whilst a significant fraction of adsorbed Zn has a high likelihood of being released back into solution. Among heavy metals, Zn is considered to be the most commonly available metal among road surface pollutants.
Resumo:
During a major flood event, the inundation of urban environments leads to some complicated flow motion most often associated with significant sediment fluxes. In the present study, a series of field measurements were conducted in an inundated section of the City of Brisbane (Australia) about the peak of a major flood in January 2011. Some experiments were performed to use ADV backscatter amplitude as a surrogate estimate of the suspended sediment concentration (SSC) during the flood event. The flood water deposit samples were predominantly silty material with a median particle size about 25 μm and they exhibited a non-Newtonian behavior under rheological testing. In the inundated urban environment during the flood, estimates of suspended sediment concentration presented a general trend with increasing SSC for decreasing water depth. The suspended sediment flux data showed some substantial sediment flux amplitudes consistent with the murky appearance of floodwaters. Altogether the results highlighted the large suspended sediment loads and fluctuations in the inundated urban setting associated possibly with a non-Newtonian behavior. During the receding flood, some unusual long-period oscillations were observed (periods about 18 min), although the cause of these oscillations remains unknown. The field deployment was conducted in challenging conditions highlighting a number of practical issues during a natural disaster.
Resumo:
Sampling of the El Chichón stratospheric cloud in early May and in late July, 1982, showed that a significant proportion of the cloud consisted of solid particles between 2 μm and 40 μm size. In addition, many particles may have been part of larger aggregates or clusters that ranged in size from < 10 μm to > 50 μm. The majority of individual grains were angular aluminosilicate glass shards with various amounts of smaller, adhering particles. Surface features on individual grains include sulfuric acid droplets and larger (0.5 μm to 1 μm) sulfate gel droplets with various amounts of Na, Mg, Ca and Fe. The sulfate gels probably formed by the interaction of sulfur-rich gases and solid particles within the cloud soon after eruption. Ca-sulfate laths may have formed by condensation within the plume during eruption, or alternatively, at a later stage by the reaction of sulfuric acid aerosols with ash fragments within the stratospheric cloud. A Wilson-Huang formulation for the settling rate of individual particles qualitatively agrees with the observed particle-size distribution for a period at least four months after injection of material into the stratosphere. This result emphasizes the importance of particle shape in controlling the settling rate of volcanic ash from the stratosphere.
Resumo:
Several investigators have recently proposed classification schemes for stratospheric dust particles [1-3]. In addition, extraterrestrial materials within stratospheric dust collections may be used as a measure of micrometeorite flux [4]. However, little attention has been given to the problems of the stratospheric collection as a whole. Some of these problems include: (a) determination of accurate particle abundances at a given point in time; (b) the extent of bias in the particle selection process; (c) the variation of particle shape and chemistry with size; (d) the efficacy of proposed classification schemes and (e) an accurate determination of physical parameters associated with the particle collection process (e.g. minimum particle size collected, collection efficiency, variation of particle density with time). We present here preliminary results from SEM, EDS and, where appropriate, XRD analysis of all of the particles from a collection surface which sampled the stratosphere between 18 and 20km in altitude. Determinations of particle densities from this study may then be used to refine models of the behavior of particles in the stratosphere [5].
Resumo:
The application of epoxy embedding and microtomy to individual chondritic interplanetary dust particles (lOP's)(Bradley and Brownlee, 1986a) provides not only higher precision in thin-film elemental analyses (Bradley and Brownlee, 19861:1), but also allows a wealth of other important techniques for the micro-characterization of these primitive extraterrestrial materials. For example, individual sections (e.g. 100 nm thick) or a series of sections, can be examined using image analysis techniques which utilize either transmitted or scanned secondary electron images, or alternatively, secondary X-ray spectra collected concurrently from a given region of sample. Individual particles, or groups of particles with similar image characteristics can then be rapidly identified using conventional grey-scale/particle recognition techniques for each microtomed section of lOP. This type of image analysis provides a suitable method for determination of particle size and shape distribution as well as porosity throughout the aggregate.
Resumo:
Bulk and size-fractionated kaolinites from seven localities in Australia as well as the Clay Minerals Society Source Clays Georgia KGa-1 and KGa-2 have been studied by X-ray diffraction (XRD), laser scattering, and electron microscopy in order to understand the variation of particle characteristics across a range of environments and to correlate specific particle characteristics with intercalation behavior. All kaolinites have been intercalated with N-methyl (NMF) after pretreatment with hydrazine hydrate, and the relative efficiency of intercalation has been determined using XRD. Intercalate yields of kaolinite: NMF are consistently low for bulk samples that have a high proportion of small-sized particles (i.e., <0.5 µm) and for biphased kaolinites with a high percentage (>60%) of low-defect phase. In general, particle size appears to be a more significant controlling factor than defect distribution in determining the relative yield of kaolinite: NMF intercalate.
A multivariate approach to the identification of surrogate parameters for heavy metals in stormwater
Resumo:
Stormwater is a potential and readily available alternative source for potable water in urban areas. However, its direct use is severely constrained by the presence of toxic pollutants, such as heavy metals (HMs). The presence of HMs in stormwater is of concern because of their chronic toxicity and persistent nature. In addition to human health impacts, metals can contribute to adverse ecosystem health impact on receiving waters. Therefore, the ability to predict the levels of HMs in stormwater is crucial for monitoring stormwater quality and for the design of effective treatment systems. Unfortunately, the current laboratory methods for determining HM concentrations are resource intensive and time consuming. In this paper, applications of multivariate data analysis techniques are presented to identify potential surrogate parameters which can be used to determine HM concentrations in stormwater. Accordingly, partial least squares was applied to identify a suite of physicochemical parameters which can serve as indicators of HMs. Datasets having varied characteristics, such as land use and particle size distribution of solids, were analyzed to validate the efficacy of the influencing parameters. Iron, manganese, total organic carbon, and inorganic carbon were identified as the predominant parameters that correlate with the HM concentrations. The practical extension of the study outcomes to urban stormwater management is also discussed.
Resumo:
Atmospheric deposition is one of the most important pathways of urban stormwater pollution. Atmospheric deposition which can be in the form of either wet or dry deposition have distinct characteristics in terms of associated particulate sizes, pollutant types and influential parameters. This paper discusses the outcomes of a comprehensive research study undertaken to identify important traffic characteristics and climate factors such as antecedent dry period and rainfall characteristics which influences the characteristics of wet and dry deposition of solids and heavy metals. The outcomes confirmed that Zinc (Zn) is correlated with traffic volume whereas Lead (Pb), Cadmium (Cd), Nickel (Ni), and Copper (Cu) are correlated with traffic congestion. Consequently, reducing traffic congestion will be more effective than reducing traffic volume for improving air quality particularly in relation to Pb, Cd, Ni, and Cu. Zn was found to have the highest atmospheric deposition rate compared to other heavy metals. Zn in dry deposition is associated with relatively larger particle size fractions (>10 µm), whereas Pb, Cd, Ni and Cu are associated with relatively smaller particle size fractions (<10 µm). The analysis further revealed that bulk (wet plus dry) deposition which is correlated with rainfall depth and contains a relatively higher percentage of smaller particles compared to dry deposition which is correlated with the antecedent dry period. As particles subjected to wet deposition are smaller, they disperse over a larger area from the source of origin compared to particles subjected to dry deposition as buoyancy forces become dominant for smaller particles compared to the influence of gravity. Furthermore, exhaust emission particles were found to be primarily associated with bulk deposition compared to dry deposition particles which mainly originate from vehicle component wear.
Resumo:
Platey grains of cubic Bi2O3, α-Bi2O3, and Bi2O2.75 nanograins were associated with chondritic porous interplanetary dust particles W7029C1, W7029E5, and 2011C2 that were collected in the stratosphere at 17-19 km altitude. Similar Bi oxide nanograins were present in the upper stratosphere during May 1985. These grains are linked to the plumes of several major volcanic eruptions during the early 1980s that injected material into the stratosphere. The mass of sulfur from these eruptions is a proxy for the mass of stratospheric Bi from which we derive the particle number densities (p m -3) for "average Bi2O3 nanograins" due to this volcanic activity and those necessary to contaminate the extraterrestrial chondritic porous interplanetary dust particles via collisional sticking. The match between both values supports the idea that Bi2O3 nanograins of volcanic origin could contaminate interplanetary dust particles in the Earth's stratosphere. Copyright 1997 by the American Geophysical Union.
Resumo:
A co-precipitation process for large-scale manufacture of bismuth-based HTSC powders has been demonstrated. Powders manufactured by this process have a high phase purity and precisely reproducible stoichiometry. Controlled time and temperature variations are used to convert precursors to HTSC compounds and to obtain specific particle-size distributions. The process has been demonstrated for a variety of compositions in the BSCCO system. Electron microscopy X-ray diffraction, inductively coupled plasma spectroscopy and magnetic-susceptibility measurements are used to characterize the powders.
Resumo:
Quantities of Y2BaCuO5 powder greater than 500g have been manufactured by a co-precipitation process. By suitable heat treatments, the particle size of these powders can be varied from 5µm to less than 500nm. Sub-micrometer size powders may, under some conditions, have a duller green colour which is attributed to <2% unreacted material. However, after re-grinding and re-firing of this powder, high-purity powders can be achieved without significant grain growth. Inductively coupled plasma (ICP) spectroscopy is used to measure the stoichiometry of the powders and X-ray diffraction is used to determine phase purity. In both cases, the bulk composition is consistent with Y2BaCuO5 and phase purity is considered better than 95%.
Resumo:
Bulk and size-fractionated kaolinites from seven localities in Australia as well as the Clay Minerals Society Source Clays Georgia KGa-1 and KGa-2 have been studied by X-ray diffraction (XRD), laser scattering, and electron microscopy in order to understand the variation of particle characteristics across a range of environments and to correlate specific particle characteristics with intercalation behavior. All kaolinites have been intercalated with N-methyl formamide (NMF) after pretreatment with hydrazine hydrate, and the relative efficiency of intercalation has been determined using XRD. Intercalate yields of kaolinite: NMF are consistently low for bulk samples that have a high proportion of small-sized particles (i.e., <0.5 µm) and for biphased kaolinites with a high percentage (>60%) of low-defect phase. In general, particle size appears to be a more significant controlling factor than defect distribution in determining the relative yield of kaolinite: NMF intercalate.
Resumo:
A review of 291 catalogued particles on the bases of particle size, shape, bulk chemistry, and texture is used to establish a reliable taxonomy. Extraterrestrial materials occur in three defined categories: spheres, aggregates and fragments. Approximately 76% of aggregates are of probable extraterrestrial origin, whereas spheres contain the smallest amount of extraterrestrial material (approx 43%). -B.M.