1000 resultados para open waveguides
Resumo:
A novel design of out-of-plane grating couplers is proposed for coupling between silicon-on-insulator nanophotonic waveguides and single-mode fibres. The coupler with the first-order diffraction coupling to the optical fibre is actually a second-order reflected grating with two times of period of the first-order grating. To enhance outcoupled power, a back hole is designed to form in the silicon substrate and a kind of metals is placed on the top acting as a reflection layer. The coupler is optimized using coupled-mode- based simulations, showing that, the coupling efficiency to and from tapered optical fibre can be as high as 85% with 1 dB bandwidth about 23nm.
Resumo:
The combination of the effective index method and the transfer matrix method is adopted to calculate the indices of quasi-TE and quasi-TM modes in a UV-written channel waveguide, and the difference between the indices is used to characterize its birefringence. The dimensions, the ratio of width to thickness, the original index of the core layer, the index of the cladding, and the index profile are all taken into account. The simulation results indicate that the birefringence decreases with increasing dimensions, ratio of width to thickness, and indices of the cladding; on the contrary, increases of the original index of the core layer and of the vertical index gradient intensified the birefringence. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A thermo-optical waveguide switch matrix is designed and fabricated on silicon-on-insulator wafer. Multi-mode interferometers are used as power splitters and combiners in a Mach-Zehnder structure. Inductively coupled plasma reactive ion etching is used to fabricate the waveguides. The rise and fall times of the switch matrix are 13 mu s and 7 mu s, respectively. Switch cells have an average switching power consumption of 340 mW.
Resumo:
The propagation losses in single-line defect waveguides in a two-dimensional (2D) square-lattice photonic crystal (PC) consisted of infinite dielectric rods and a triangular-lattice photonic crystal slab with air holes are studied by finite-difference time-domain (FDTD) technique and a Pade approximation. The decaying constant beta of the fundamental guided mode is calculated from the mode frequency, the quality factor (Q-factor) and the group velocity v(g) as beta = omega/(2Qv(g)). In the 2D square-lattice photonic crystal waveguide (PCW), the decaying rate ranged from 10(3) to 10(-4) cm(-1) can be reliably obtained from 8 x 10(3)-item FDTD output with the FDTD computing time of 0.386 ps. And at most 1 ps is required for the mode with the Q-factor of 4 x 10(11) and the decaying rate of 10(-7) cm(-1). In the triangular-lattice photonic crystal slab, a 10(4)-item FDTD output is required to obtain a reliable spectrum with the Q-factor of 2.5 x 10(8) and the decaying rate of 0.05 cm(-1). (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Improved methods of reduction of bend loss of silicon-on-insulator waveguides were simulated and analyzed by means of effective index method (EIM) and two dimensional beam propagation method (2D-BPM). The simulation results indicate that two different methods, one of which are introducing an offset at the junction of two waveguides and the other is etching groove at the outside of bend waveguide, can decrease bend loss. And the later one is more effective. Meanwhile, experiments validate them. By etching groove, the insertion loss of bend waveguide of R = 16mm, transverse displacement 70mum was decreased 5dB. And its bend loss was almost eliminated.
Resumo:
The fields in 3-dimensional tapered waveguides are unstable compared with the fields in the straight waveguides. In the case of waveguide-to-fiber coupling and fiber-to-waveguide coupling, a sequence of short straight waveguides has been modeled to approximate the 3-dimensional tapered waveguide; and the unstable incident and reflected fields, as well as their derivatives, were determined by the beam propagation method(BPM). Then free space radiation mode(FSRM) was employed to calculate the reflected and transmitted powers. Analysis results of the coupling of fiber with silicon-on-insulator(SOI) tapered rib waveguides showed the feasibility of the method.
Resumo:
We present fabrication and experimental measurement of a series of photonic crystal waveguides. The complete devices consist of an injector taper down from 3 mu m into a triangular-lattice air-hole single-line-defect waveguide with lattice constant from 410nm to 470nm and normalized radius 0.31. We fabricate these devices on a siliconon-insulator substrate and characterize them using a tunable laser source over a wavelength range from 1510nm to 1640nm. A sharp attenuation at photonic crystal waveguide mode edge is observed for most structures. The edge of guided band is shifted about 30nm with the 10nm increase of the lattice constant. We obtain high-efficiency light propagation and broad flat spectrum response of the photonic crystal waveguides.
Resumo:
地址: Chinese Acad Sci, Inst Semicond, State Key Lab Integrated Optoelect, Beijing 100083, Peoples R China
Resumo:
Novel folding 8 x 8 matrix switches based on silicon on insulator were demonstrated. In the design, single-mode rib waveguides and multimode interferences are connected by optimized tapered waveguides to reduce the mode coupling loss between the two types of waveguides. The self-aligned method was applied to the key integrated turning mirrors for perfect positions and low loss of them. A mixed etching process including inductively coupled plasma and chemical etching was employed to etch waveguides and mirrors, respectively. The compact size of the device is only 20 x 3.2 mm(2). The switch element with high switching speed and low power consumption is presented in the matrix. The average insertion loss of the matrix is about -21 dB, and the excess loss of one mirror is measured of -1.4 dB. The worst crosstalk is larger than 21 dB. Experimental results illuminate that some of the main characteristics of optical matrix switches are. developed in the modified design, which is in accord with theoretic analyses.
Resumo:
By viewing the non-equilibrium transport setup as a quantum open system, we propose a reduced-density-matrix based quantum transport formalism. At the level of self-consistent Born approximation, it can precisely account for the correlation between tunneling and the system internal many-body interaction, leading to certain novel behavior such as the non-equilibrium Kondo effect. It also opens a new way to construct time-dependent density functional theory for transport through large-scale complex systems. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Based on a new finite-difference scheme and Runge-Kutta method together with transparent boundary conditions (TBCs), a novel beam propagation method to model step-index waveguides with tilt interfaces is presented. The modified scheme provides an precies description of the tilt interface of the nonrectangular waveguide structure, showing a much better efficiency and accuracy comparing with the previously presented formulas.
Resumo:
The transfer matrix method combined with the effective index method is adopted to model the silica-based channel waveguide patterned by UV writing. The effective indexes of the graded index channel waveguides with different dimension are calculated. The maximal error of the effective index is less than 3 x 10(-5). By this method, the number of the guided mode and the dimension range to guide certain modes can be obtained easily. Finally, the dimension range to guide a single mode is presented. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A new finite-difference scheme is presented for the second derivative of a semivectorial field in a step-index optical waveguide with tilt interfaces. The present scheme provides an accurate description of the tilt interface of the nonrectangular structure. Comparison with previously presented formulas shows the effectiveness of the present scheme.
Resumo:
A simple method based on the effective index method was used to estimate the minimum bend radii of curved SOI waveguides. An analytical formula was obtained to estimate the minimum radius of curvature at which the mode becomes cut off due to the side radiative loss.
Resumo:
The relations between the gain factor, defined as the ratio of modal gain to material gain, and the optical confinement factor are discussed for the TE and TM modes in slab waveguides. For the TE modes, the gain factor is larger than the optical confinement factor, due to the zigzag propagation of the modal light ray in the core layers. For the TM modes, the existence of a nonzero electric field in the propagation direction results in a more complicated relation of the gain factor and the confinement factor. For an air-Si-SiO2 strong slab waveguide, the numerical results show that the modal gain can be larger than the material gain and the higher-order transverse mode can have an even larger modal gain than the fundamental mode, The efficiency of waveguiding photodetectors can be improved by applying the modal gain or loss characteristics in strong waveguides.