919 resultados para one-boson-exchange models
Resumo:
OBJECTIVE:: To report early blood exchange transfusion in malignant pertussis and a favorable clinical outcome. SETTING:: A pediatric intensive care unit in a tertiary hospital in Geneva, Switzerland. DESIGN:: A descriptive case report. PATIENT:: An 8-wk-old girl was diagnosed with malignant pertussis (extreme leukocytosis, seizures, pneumonia, and secondary severe hypoxic respiratory failure associated with pulmonary hypertension). After administration of a one-volume blood exchange transfusion, a rapid decrease in white blood cell count (from 119,000/mm to 36,500/mm) was observed and followed by clinical improvement and favorable outcome despite the initial presence of all described risk factors associated with a high mortality. CONCLUSION:: The use of exchange blood transfusion early in the course of the disease might help to prevent a fatal outcome of malignant pertussis.
Resumo:
In a recent paper, Traulsen and Nowak use a multilevel selection model to show that cooperation can be favored by group selection in finite populations [Traulsen A, Nowak M (2006) Proc Natl Acad Sci USA 103:10952-10955]. The authors challenge the view that kin selection may be an appropriate interpretation of their results and state that group selection is a distinctive process "that permeates evolutionary processes from the emergence of the first cells to eusociality and the economics of nations." In this paper, we start by addressing Traulsen and Nowak's challenge and demonstrate that all their results can be obtained by an application of kin selection theory. We then extend Traulsen and Nowak's model to life history conditions that have been previously studied. This allows us to highlight the differences and similarities between Traulsen and Nowak's model and typical kin selection models and also to broaden the scope of their results. Our retrospective analyses of Traulsen and Nowak's model illustrate that it is possible to convert group selection models to kin selection models without disturbing the mathematics describing the net effect of selection on cooperation.
Resumo:
It has been repeatedly debated which strategies people rely on in inference. These debates have been difficult to resolve, partially because hypotheses about the decision processes assumed by these strategies have typically been formulated qualitatively, making it hard to test precise quantitative predictions about response times and other behavioral data. One way to increase the precision of strategies is to implement them in cognitive architectures such as ACT-R. Often, however, a given strategy can be implemented in several ways, with each implementation yielding different behavioral predictions. We present and report a study with an experimental paradigm that can help to identify the correct implementations of classic compensatory and non-compensatory strategies such as the take-the-best and tallying heuristics, and the weighted-linear model.
Resumo:
Depth-averaged velocities and unit discharges within a 30 km reach of one of the world's largest rivers, the Rio Parana, Argentina, were simulated using three hydrodynamic models with different process representations: a reduced complexity (RC) model that neglects most of the physics governing fluid flow, a two-dimensional model based on the shallow water equations, and a three-dimensional model based on the Reynolds-averaged Navier-Stokes equations. Row characteristics simulated using all three models were compared with data obtained by acoustic Doppler current profiler surveys at four cross sections within the study reach. This analysis demonstrates that, surprisingly, the performance of the RC model is generally equal to, and in some instances better than, that of the physics based models in terms of the statistical agreement between simulated and measured flow properties. In addition, in contrast to previous applications of RC models, the present study demonstrates that the RC model can successfully predict measured flow velocities. The strong performance of the RC model reflects, in part, the simplicity of the depth-averaged mean flow patterns within the study reach and the dominant role of channel-scale topographic features in controlling the flow dynamics. Moreover, the very low water surface slopes that typify large sand-bed rivers enable flow depths to be estimated reliably in the RC model using a simple fixed-lid planar water surface approximation. This approach overcomes a major problem encountered in the application of RC models in environments characterised by shallow flows and steep bed gradients. The RC model is four orders of magnitude faster than the physics based models when performing steady-state hydrodynamic calculations. However, the iterative nature of the RC model calculations implies a reduction in computational efficiency relative to some other RC models. A further implication of this is that, if used to simulate channel morphodynamics, the present RC model may offer only a marginal advantage in terms of computational efficiency over approaches based on the shallow water equations. These observations illustrate the trade off between model realism and efficiency that is a key consideration in RC modelling. Moreover, this outcome highlights a need to rethink the use of RC morphodynamic models in fluvial geomorphology and to move away from existing grid-based approaches, such as the popular cellular automata (CA) models, that remain essentially reductionist in nature. In the case of the world's largest sand-bed rivers, this might be achieved by implementing the RC model outlined here as one element within a hierarchical modelling framework that would enable computationally efficient simulation of the morphodynamics of large rivers over millennial time scales. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Abstract : The principal focus of this work was to study the molecular changes leading to the development of diabetic peripheral neuropathy (DPN). DPN is the most common complication associated with both type I and II diabetes mellitus (DM). This pathology is the leading cause of non-traumatic amputations. Even though the pathological and morphological changes underlying DPN are relatively well described, the implicated molecular mechanisms remain poorly understood. The following two approaches were developed to study the development of DPN in a rodent model of DM type I. As a first approach, we studied the implication of lipid metabolism in DPN phenotype, concentrating on Sterol Response Element Binding Protein (SREBP)-lc which is the key regulator of storage lipid metabolism. We showed that SREBP-1c was expressed in peripheral nerves and that its expression profile followed the expression of genes involved in storage lipid metabolism. In addition, the expression of SREBP-1c in the endoneurium of peripheral nerves was dependant upon nutritional status and this expression was also perturbed in type I diabetes. In line with this, we showed that insulin elevated the expression of SREBP-1c in primary cultured Schwann cells by activating the SREBP-1c promoter. Taken together, these findings reveal that SREBP-1c expression in Schwann cells responds to metabolic stimuli including insulin and that this response is affected in type I diabetes mellitus. This suggests that disturbed SREBP-1c regulated lipid metabolism may contribute to the pathophysiology of DPN. As a second approach, we performed a comprehensive analysis of the molecular changes associated with DPN in the Akital~1~+ mouse which is a model of spontaneous early-onset type I diabetes mellitus. This mouse expresses a mutated non-functional isoform of insulin, leading to hypoinsulinemia and hyperglycaemia. To determine the onset of DPN, weight, blood glucose and motor nerve conduction velocity (MNCV) were measured in Akital+/+ mice during the first three months of life. A decrease in MNCV was evident akeady one week after the onset of hyperglycemia. To explore the molecular changes associated with the development of DPN in these mice, we performed gene expression profiling using sciatic nerve endoneurium and dorsal root ganglia (DRG) isolated from early diabetic male Akita+/+ mice and sex-matched littermate controls. No major transcriptional changes were detected either in the DRG or in the sciatic nerve endoneurium. This experiment indicates that the phenotypic changes observed during the development of DPN are not correlated with major transcriptional alterations, but mainly with alterations at the protein level. Résumé Lors ce travail, nous nous sommes intéressés aux changements moléculaires aboutissant aux neuropathies périphériques dues au diabète (NPD). Les NPD sont la complication la plus commune du diabète de type I et de type II. Cette pathologie est une cause majeure d'amputations. Même si les changements pathologiques et morphologiques associés aux NPD sont relativement bien décrits, les mécanismes moléculaires provoquant cette pathologie sont mal connus. Deux approches ont principalement été utilisées pour étudier le développement des NPD dans des modèles murins du diabète de type I. Nous avons d'abord étudié l'impact du métabolisme des lipides sur le développement des NPD en nous concentrant sur Sterol Response Element Binding Protein (SREBP)-1 c qui est un régulateur clé des lipides de stockage. Nous avons montré que SREBP-1 c est exprimé dans les nerfs périphériques et que son profil d'expression suit celui de gènes impliqués dans le métabolisme des lipides de stockage. De plus, l'expression de SREBP-1c dans l'endoneurium des nerfs périphériques est dépendante du statut nutritionnel et est dérégulée lors de diabète de type I. Nous avons également pu montrer que l'insuline augmente l'expression de SREBP-1c dans des cultures primaires de cellules de Schwann en activant le promoteur de SREBP-1c. Ses résultats démontrent que l'expression de SREBP-1c dans les cellules de Schwann est contrôlée par des stimuli métaboliques comme l'insuline et que cette réponse est affectée dans le cas d'un diabète de type I. Ces données suggèrent que la dérégulation de l'expression de SREBP-1c lors du diabète pourrait affecter le métabolisme des lipides et ainsi contribuer à la pathophysiologie des NPD. Comme seconde approche, nous avons réalisé une analyse globale des changements moléculaires associés au développement des NPD chez les souris Akita+/+, un modèle de diabète de type I. Cette souris exprime une forme mutée et non fonctionnelle de l'insuline provoquant une hypoinsulinémie et une hyperglycémie. Afin de déterminer le début du développement de la NPD, le poids, le niveau de glucose sanguin et la vitesse de conduction nerveuse (VCN) ont été mesurés durant les 3 premiers mois de vie. Une diminution de la VCN a été détectée une semaine seulement après le développement de l'hyperglycémie. Pour explorer les changements moléculaires associés avec le développement des NPD, nous avons réalisé un profil d'expression de l'endoneurium du nerf sciatique et des ganglions spinaux isolés à partir de souris Akital+/+ et de souris contrôles Akita+/+. Aucune altération transcriptionnelle majeure n'a été détectée dans nos échantillons. Cette expérience suggère que les changements phénotypiques observés durant le développement des NPD ne sont pas corrélés avec des changements importants au niveau transcriptionnel, mais plutôt avec des altérations au niveau protéique. Résumé : Lors ce travail, nous nous sommes intéressés aux changements moléculaires aboutissant aux neuropathies périphériques dues au diabète (NPD). Les NPD sont la complication la plus commune du diabète de type I et de type II. Cette pathologie est une cause majeure d'amputations. Même si les changements pathologiques et morphologiques associés aux NPD sont relativement bien décrits, les mécanismes moléculaires provoquant cette pathologie sont mal connus. Deux approches ont principalement été utilisées pour étudier le développement des NPD dans des modèles murins du diabète de type I. Nous avons d'abord étudié l'impact du métabolisme des lipides sur le développement des NPD en nous concentrant sur Sterol Response Element Binding Protein (SREBP)-1c qui est un régulateur clé des lipides de stockage. Nous avons montré que SREBP-1 c est exprimé dans les nerfs périphériques et que son profil d'expression suit celui de gènes impliqués dans le métabolisme des lipides de stockage. De plus, l'expression de SREBP-1c dans l'endoneurium des nerfs périphériques est dépendante du statut nutritionnel et est dérégulée lors de diabète de type I. Nous avons également pu montrer que l'insuline augmente l'expression de SREBP-1c dans des cultures primaires de cellules de Schwann en activant le promoteur de SREBP-1c. Ses résultats démontrent que l'expression de SREBP-1c dans les cellules de Schwann est contrôlée par des stimuli métaboliques comme l'insuline et que cette réponse est affectée dans le cas d'un diabète de type I. Ces données suggèrent que la dérégulation de l'expression de SREBP-1c lors du diabète pourrait affecter le métabolisme des lipides et ainsi contribuer à la pathophysiologie des NPD. Comme seconde approche, nous avons réalisé une analyse globale des changements moléculaires associés au développement des NPD chez les souris Akita~~Z~+, un modèle de diabète de type I. Cette souris exprime une forme mutée et non fonctionnelle de l'insuline provoquant une hypoinsulinémie et une hyperglycémie. Afin de déterminer le début du développement de la NPD, le poids, le niveau de glucose sanguin et la vitesse de conduction nerveuse (VCN) ont été mesurés durant les 3 premiers mois de vie. Une diminution de la VCN a été détectée une semaine seulement après le développement de l'hyperglycémie. Pour explorer les changements moléculaires associés avec le développement des NPD, nous avons réalisé un profil d'expression de l'endoneurium du nerf sciatique et des ganglions spinaux isolés à partir de souris Akital+/+ et de souris contrôles Akita+/+. Aucune altération transcriptionnelle majeure n'a été détectée dans nos échantillons. Cette expérience suggère que les changements phénotypiques observés durant le développement des NPD ne sont pas corrélés avec des changements importants au niveau transcriptionnel, mais plutôt avec des altérations au niveau protéique.
Resumo:
Individual learning (e.g., trial-and-error) and social learning (e.g., imitation) are alternative ways of acquiring and expressing the appropriate phenotype in an environment. The optimal choice between using individual learning and/or social learning may be dictated by the life-stage or age of an organism. Of special interest is a learning schedule in which social learning precedes individual learning, because such a schedule is apparently a necessary condition for cumulative culture. Assuming two obligatory learning stages per discrete generation, we obtain the evolutionarily stable learning schedules for the three situations where the environment is constant, fluctuates between generations, or fluctuates within generations. During each learning stage, we assume that an organism may target the optimal phenotype in the current environment by individual learning, and/or the mature phenotype of the previous generation by oblique social learning. In the absence of exogenous costs to learning, the evolutionarily stable learning schedules are predicted to be either pure social learning followed by pure individual learning ("bang-bang" control) or pure individual learning at both stages ("flat" control). Moreover, we find for each situation that the evolutionarily stable learning schedule is also the one that optimizes the learned phenotype at equilibrium.
Resumo:
Detailed large-scale information on mammal distribution has often been lacking, hindering conservation efforts. We used the information from the 2009 IUCN Red List of Threatened Species as a baseline for developing habitat suitability models for 5027 out of 5330 known terrestrial mammal species, based on their habitat relationships. We focused on the following environmental variables: land cover, elevation and hydrological features. Models were developed at 300 m resolution and limited to within species' known geographical ranges. A subset of the models was validated using points of known species occurrence. We conducted a global, fine-scale analysis of patterns of species richness. The richness of mammal species estimated by the overlap of their suitable habitat is on average one-third less than that estimated by the overlap of their geographical ranges. The highest absolute difference is found in tropical and subtropical regions in South America, Africa and Southeast Asia that are not covered by dense forest. The proportion of suitable habitat within mammal geographical ranges correlates with the IUCN Red List category to which they have been assigned, decreasing monotonically from Least Concern to Endangered. These results demonstrate the importance of fine-resolution distribution data for the development of global conservation strategies for mammals.
Resumo:
The control and regrowth after nicosulfuron reduced rate treatment of Johnsongrass (Sorghum halepense L. Pers.) populations, from seven Argentinean locations, were evaluated in pot experiments to assess if differential performance could limit the design and implementation of integrated weed management programs. Populations from humid regions registered a higher sensibility to reduced rates of nicosulfuron than populations from subhumid regions. This effect was visualised in the values of regression coefficient of the non-linear models (relating fresh weight to nicosulfuron rate), and in the time needed to obtain a 50% reduction of photosynthesis rate and stomatal conductance. The least leaf CO2 exchange of subhumid populations could result in a lower foliar absorption and translocation of nicosulfuron, thus producing less control and increasing their ability to sprout and produce new aerial biomass. The three populations from subhumid regions, with less sensibility to nicosulfuron rates, presented substantial difference in fresh weight, total rhizome length and number of rhizome nodes, when they were evaluated 20 week after treatment. In consequence, a substantial Johnsongrass re-infestation could occur, if rates below one-half of nicosulfuron labeled rate were used to control Johnsongrass in subhumid regions.
Resumo:
G-protein-signaling pathways convey extracellular signals inside the cells and regulate distinct physiological responses. This type of signaling pathways consists of three major components: G-protein-coupled receptors (GPCRs), heterotrimeric G proteins (G-proteins) and downstream effectors. Upon ligand binding, GPCRs activate heterotrimeric G proteins to initiate the signaling cascade. Dysfunction of GPCR signaling correlates with numerous diseases such as diabetes, nervous and immune system deficiency, and cancer. As the signaling switcher, G-proteins (Gs, Gq/11, G12/13, and Gi/o) have been an appealing topic of research for decades. A heterotrimeric G-protein is composed of three subunits, the guanine nucleotide associated a-subunit, ß and y subunits. In general, the duration of signaling is determined by the lifetime of activated (GTP bound) Ga subunits. Identification of novel communication partners of Ga subunits appears to be an attractive way to understand the machinery of GPCR signaling. In our lab, we mainly focus on Gao, which is abundantly expressed in the nervous system. Here we present two novel interacting partners of Drosophila Gao: Dhit and Kermit, identified through yeast two-hybrid screening and genetic screening respectively. Dhit is characterized by a small size with a conserved RGS domain and an N-terminal cysteine rich motif. The RGS domain possesses the GAP (GTPase activating protein) activity towards G proteins. However, we found that Dhit exerts not only the GAP activity but also the GDI (guanine nucleotide dissociation inhibitor) activity towards Gao. The unexpected GDI activity is preserved in GAIP/RGS19 - a mammalian homologue of Dhit. Further experiments confirmed the GDI activity of Dhit and GAIP/RGS19 in Drosophila and mammalian cell models. Therefore, we propose that Dhit and its mammalian homologues modulate GPCR signaling by a double suppression of Ga subunits - suppression of their nucleotide exchange with GTP and acceleration of their hydrolysis of GTP. Kermit/GEPC was first identified as a binding partner of GAIP/RGS19 in a yeast two- hybrid screen. Instead of interacting with the Drosophila homologue of GAIP/RGS19 (Dhit), Kermit binds to Gao in vivo and in vitro. The functional consequence of Kermit/Gao interaction is the regulation of localization of Vang (one of the planar cell polarity core components) at the apical membrane. Overall, my work elaborated the action of Gao with its two interaction partners in Gao- mediated signaling pathway. Conceivably, the understanding of GPCR signaling including Gao and its regulators or effectors will ultimately shed light on future pharmaceutical research. - Les voies de signalisation médiées par les protéines G transmettent des signaux extracellulaires à l'intérieur des cellules pour réguler des réponses physiologiques distinctes. Cette voie de signalisation consiste en trois composants majeurs : les récepteurs couplés aux protéines G (GPCRs), les protéines G hétérotrimériques (G-proteins) et les effecteurs en aval. Suite à la liaison du ligand, les GPCRs activent les protéines G hétérotrimériques qui initient la cascade de signalisation. Des dysfonctions dans la signalisation médiée par les GPCRs sont corrélées avec de nombreuses maladies comme le diabète, des déficiences immunes et nerveuses, ainsi que le cancer. Puisque la voie de signalisation s'active et se désactive, les protéines G (Gs, Gq/11, G12/13 et Gi/o) ont été un sujet de recherche attrayant pendant des décennies. Une protéine G hétérotrimérique est composée de trois sous-unités, la sous-unité a associée au nucléotide guanine, ainsi que les sous-unités ß et y. En général, la durée du signal est déterminée par le temps de demi-vie des sous-unités Ga activées (Ga liées au GTP). Identifier de nouveaux partenaires de communication des sous-unités Ga se révèle être un moyen attractif de comprendre la machinerie de la signalisation par les GPCRs. Dans notre laboratoire nous nous sommes concentrés principalement sur Gao qui est exprimée de manière abondante dans le système nerveux. Nous présentons ici deux nouveaux partenaires qui interagissent avec Gao chez la drosophile: Dhit et Kermit, qui ont été identifiés respectivement par la méthode du yeast two-hybrid et par criblage génétique. Dhit est caractérisé par une petite taille, avec un domaine RGS conservé et un motif N- terminal riche en cystéines. Le domaine RGS contient une activité GAP (GTPase activating protein) pour les protéines G. Toutefois, nous avons découvert que Dhit exerce non seulement une activité GAP mais aussi une activité GDI (guanine nucleotide dissociation inhibitor) à l'égard de Gao. Cette activité GDI inattendue est préservée dans RGS19 - un homologue de Dhit chez les mammifères. Des expériences supplémentaires ont confirmé l'activité GDI de Dhit et de RGS19 chez Drosophila melanogaster et les modèles cellulaires mammifères. Par conséquent, nous proposons que Dhit et ses homologues mammifères modulent la signalisation GPCR par une double suppression des sous-unités Ga - suppression de leur nucléotide d'échange avec le GTP et une accélération dans leur hydrolyse du GTP. Kermit/GIPC a été premièrement identifié comme un partenaire de liaison de RGS19 dans le criblage par yeast two-hybrid. Au lieu d'interagir avec l'homologue chez la drosophile de RGS19 (Dhit), Kermit se lie à Gao in vivo et in vitro. La conséquence fonctionnelle de l'interaction Kermit/Gao est la régulation de la localisation de Vang, un des composants essentiel de la polarité planaire cellulaire, à la membrane apicale. Globalement, mon travail a démontré l'action de Gao avec ses deux partenaires d'interaction dans la voie de signalisation médiée par Gao. La compréhension de la signalisation par les GPCRs incluant Gao et ses régulateurs ou effecteurs aboutira à mettre en lumière de futurs axes dans la recherche pharmacologique.
Resumo:
The mouse remains the animal of choice in transgenic experiments, creating a need for methods of evaluating the physiology of genetically modified animals. We have established and characterized two murine models of renovascular hypertension known as the two-kidney, one clip and one-kidney, one clip models. The appropriate size of the clip lumen needed to induce high blood pressure was determined to be 0.12 mm. Clips with a lumen of 0.11 mm induced a high percentage of renal infarction, and clips with a 0.13-mm opening did not produce hypertension. Four weeks after clipping, two-kidney, one clip hypertensive mice exhibited blood pressure approximately 20 mm Hg higher than their sham-operated controls. After a similar period, this increase reached almost 35 mm Hg in the one-kidney, one clip model. Depending on the model, mice develop either renin-dependent or renin-independent hypertension. Both models are characterized by the development of cardiovascular hypertrophy.
Resumo:
3D engineered modeling is a relatively new and developing technology that can provide numerous benefits to owners, engineers, contractors, and the general public. This manual is for highway agencies that are considering or are in the process of switching from 2D plan sets to 3D engineered models in their highway construction projects. It will discuss some of the benefits, applications, limitations, and implementation considerations for 3D engineered models used for survey, design, and construction. Note that is not intended to cover all eventualities in all states regarding the deployment of 3D engineered models for highway construction. Rather, it describes how one state—Iowa—uses 3D engineered models for construction of highway projects, from planning and surveying through design and construction.
Resumo:
The objective of this study was to evaluate the performance of stacked species distribution models in predicting the alpha and gamma species diversity patterns of two important plant clades along elevation in the Andes. We modelled the distribution of the species in the Anthurium genus (53 species) and the Bromeliaceae family (89 species) using six modelling techniques. We combined all of the predictions for the same species in ensemble models based on two different criteria: the average of the rescaled predictions by all techniques and the average of the best techniques. The rescaled predictions were then reclassified into binary predictions (presence/absence). By stacking either the original predictions or binary predictions for both ensemble procedures, we obtained four different species richness models per taxa. The gamma and alpha diversity per elevation band (500 m) was also computed. To evaluate the prediction abilities for the four predictions of species richness and gamma diversity, the models were compared with the real data along an elevation gradient that was independently compiled by specialists. Finally, we also tested whether our richness models performed better than a null model of altitudinal changes of diversity based on the literature. Stacking of the ensemble prediction of the individual species models generated richness models that proved to be well correlated with the observed alpha diversity richness patterns along elevation and with the gamma diversity derived from the literature. Overall, these models tend to overpredict species richness. The use of the ensemble predictions from the species models built with different techniques seems very promising for modelling of species assemblages. Stacking of the binary models reduced the over-prediction, although more research is needed. The randomisation test proved to be a promising method for testing the performance of the stacked models, but other implementations may still be developed.
Resumo:
The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable approach to risk estimation would be to use organ-specific non-linear risk models applied to the dose distributions of organs within or near the treatment fields (lungs and contralateral breast in the case of breast radiotherapy) as the majority of radiation-induced secondary cancers are found in the beam-bordering regions.
Resumo:
This work aimed at determining the dissolved oxygen consumption rate of Litopenaeus vannamei juveniles maintained in a microbial biofloc raceway system at high density with no aeration. Three 4 L bottles were filled for each treatment, sealed hermetically, and placed in an enclosed greenhouse raceway system. Four shrimp (13.2±1.42 g) were assigned to two sets of the bottles, which underwent the following treatments: light conditions with no shrimp; dark conditions with no shrimp; light conditions with shrimp; and dark conditions with shrimp. Dissolved oxygen content was measured every 10 min for 30 min. A quadratic behavior was observed in dissolved oxygen concentration over time. Significant differences for oxigen consumption were observed only at 10 and 20 min between shrimp maintained in the dark and those under light conditions. At 10 min, a higher value was observed in shrimp maintained under light, and at 20 min, in the dark. Significant differences between 10 and 20 min and between 10 and 30 min were observed when oxygen consumption was analyzed over time in the presence of light. Under dark conditions there were significant differences only between 20 and 30 min. Lethal oxygen concentration (0.65 mg L-1) would be reached in less than one hour either under light or dark conditions with no aeration.
Resumo:
Several methods and approaches for measuring parameters to determine fecal sources of pollution in water have been developed in recent years. No single microbial or chemical parameter has proved sufficient to determine the source of fecal pollution. Combinations of parameters involving at least one discriminating indicator and one universal fecal indicator offer the most promising solutions for qualitative and quantitative analyses. The universal (nondiscriminating) fecal indicator provides quantitative information regarding the fecal load. The discriminating indicator contributes to the identification of a specific source. The relative values of the parameters derived from both kinds of indicators could provide information regarding the contribution to the total fecal load from each origin. It is also essential that both parameters characteristically persist in the environment for similar periods. Numerical analysis, such as inductive learning methods, could be used to select the most suitable and the lowest number of parameters to develop predictive models. These combinations of parameters provide information on factors affecting the models, such as dilution, specific types of animal source, persistence of microbial tracers, and complex mixtures from different sources. The combined use of the enumeration of somatic coliphages and the enumeration of Bacteroides-phages using different host specific strains (one from humans and another from pigs), both selected using the suggested approach, provides a feasible model for quantitative and qualitative analyses of fecal source identification.