831 resultados para offspring
Resumo:
The offspring of parasitoids, Aphidius colemani Viereck, reared on Brussels sprouts and emerging from Myzus persicae Sulzer on a fully defined artificial diet, show no preferences in a four-way olfactometer, either for the odour of the diet, the odour of Brussels sprouts, or the odour of two other crucifers (cabbage and Chinese cabbage). A similar lack of odour preferences is shown when the host aphids are exposed for parasitization (for 48 h) on cabbage, Chinese cabbage or wheat. However, if parasitization occurs on Brussels sprouts, a weak but statistically highly significant response to Brussels sprout odour is observed. Although as many as 30-35% of the parasitoids show no response to any odour, another 35% respond positively to the odour of Brussels sprout compared with responses to the odours of cabbage, Chinese cabbage or wheat of only approximately 10%. An analagous result is obtained when the parent parasitoids are reared on cabbage. In this case, significant positive responses of their offspring to cabbage odour occur only if the 48-h parasitization has occurred also on cabbage. However, with parasitoids from Brussels sprouts parasitizing the aphids for 48 h also on Brussels sprouts, the offspring subsequently emerging from pupae excised from the mummies show no preference for Brussels sprout odour. Thus, although the Brussels sprout cue had been experienced early in the development of the parasitoids, they only become conditioned to it when emerging from the mummy. Both male and female parasitoids respond very similarly in all experiments. It is proposed that the chemical cue (probably glucosinolates in these experiments) is most likely in the silk surrounding the parasitoid pupa, and that the mother may leave the chemical in or around the egg at oviposition, inducing chemical defences in her offspring to the secondary plant compounds that the offspring are likely to encounter.
Resumo:
Indirect and direct models of sexual selection make different predictions regarding the quantitative genetic relationships between sexual ornaments and fitness. Indirect models predict that ornaments should have a high heritability and that strong positive genetic covariance should exist between fitness and the ornament. Direct models, on the other hand, make no such assumptions about the level of genetic variance in fitness and the ornament, and are therefore likely to be more important when environmental sources of variation are large. Here we test these predictions in a wild population of the blue tit (Parus caeruleus), a species in which plumage coloration has been shown to be under sexual selection. Using 3 years of cross-fostering data from over 250 breeding attempts, we partition the covariance between parental coloration and aspects of nestling fitness into a genetic and environmental component. Contrary to indirect models of sexual selection, but in agreement with direct models, we show that variation in coloration is only weakly heritable (h(2) < 0.11), and that two components of offspring fitness-nestling size and fledgling recruitment-are strongly dependent on parental effects, rather than genetic effects. Furthermore, there was no evidence of significant positive genetic covariation between parental colour and offspring traits. Contrary to direct benefit models, however, we find little evidence that variation in colour reliably indicates the level of parental care provided by either males or females. Taken together, these results indicate that the assumptions of indirect models of sexual selection are not supported by the genetic basis of the traits reported on here.
Resumo:
Evolutionary theory predicts that individuals, in order to increase their relative fitness, can evolve behaviours that are detrimental for the group or population. This mismatch is particularly visible in social organisms. Despite its potential to affect the population dynamics of social animals, this principle has not yet been applied to real-life conservation. Social group structure has been argued to stabilize population dynamics due to the buffering effects of nonreproducing subordinates. However, competition for breeding positions in such species can also interfere with the reproduction of breeding pairs. Seychelles magpie robins, Copsychus sechellarum, live in social groups where subordinate individuals do not breed. Analysis of long-term individual-based data and short-term behavioural observations show that subordinates increase the territorial takeover frequency of established breeders. Such takeovers delay offspring production and decrease territory productivity. Individual-based simulations of the Seychelles magpie robin population parameterized with the long-term data show that this process has significantly postponed the recovery of the species from the Critically Endangered status. Social conflict thus can extend the period of high extinction risk, which we show to have population consequences that should be taken into account in management programmes. This is the first quantitative assessment of the effects of social conflict on conservation.
Resumo:
1. Life-history theory assumes that trade-offs exist between an individual's life-history components, such that an increased allocation of a resource to one fitness trait might be expected to result in a cost for a conflicting fitness trait. Recent evidence from experimental manipulations of wild individuals supports this assumption. 2. The management of many bird populations involves harvesting for both commercial and conservation purposes. One frequently harvested life-history stage is the egg, but the consequences of repeated egg harvesting for the individual and the long-term dynamics of the population remain poorly understood. 3. We used a well-documented restored population of the Mauritius kestrel Falco punctatus as a model system to explore the consequences of egg harvesting (and associated management practices) for an individual within the context of life-history theory. 4. Our analysis indicated that management practices enhanced both the size and number of clutches laid by managed females, and improved mid-life male and female adult survival relative to unmanaged adult kestrels. 5. Although management resulted in an increased effort in egg production, it reduced parental effort during incubation and the rearing of offspring, which could account for these observed changes. 6. Synthesis and applications. This study demonstrates how a commonly applied harvesting strategy, when examined within the context of life-history theory, can identify improvements in particular fitness traits that might alleviate some of the perceived negative impact of harvesting on the long-term dynamics of a managed population.
Resumo:
Entomopathogenic nematodes cannot be considered only as parasitic organisms. With dead Galleria mellonella larvae, we demonstrated that these nematodes use scavenging as an alternative survival strategy. We consider scavenging as the ability of entomopathogenic nematodes to penetrate, develop and produce offspring in insects which have been killed by causes other than the nematode-bacteria complex. Six Steinernema and two Heterorhabditis species scavenged but there were differences among them in terms of frequency of colonisation and in the time after death of G. mellonella larvae that cadavers were penetrated. The extremes of this behaviour were represented by Steinernema glaseri which was able to colonise cadavers which had been freeze-killed 240 h earlier and Heterorhabditis indica which only colonised cadavers which had been killed up to 72 h earlier. Also, using an olfactometer, we demonstrated that entomopathogenic nematodes were attracted to G. mellonella cadavers. (c) 2007 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Skeletal muscle constitutes a highly adaptable and malleable tissue that responds to environmental and physiological challenges by changing its phenotype in terms of size and composition, outcomes that are brought about by changes in gene expression, biochemical and metabolic properties. Both the short- and long-term effects of nutritional alterations on skeletal muscle homeostasis have been defined as the object of intensive research over the last thirty years. This review focuses predominantly on assimilating our understanding of the changes in muscle fibre phenotype and functional properties induced by either food restriction or alternatively existing on a high fat diet. Firstly, food restriction has been shown in a number of studies to decrease the myofibre cross sectional area and consistently, it has been found that glycolytic type IIB fibres are more prone to atrophy than oxidative fibres. Secondly, in rodents, a high fat diet has been shown to induce an oxidative profile in skeletal muscle, although obese humans usually show higher numbers of glycolytic type IIB fibres. Moreover, attention is paid to the effect of prenatal maternal food restriction on muscle development of the offspring in various species. A key point related to these experiments is the timing of food restriction for the mother. Furthermore, we explore extensively the seemingly species-specific response to maternal malnutrition. Finally, key signalling molecules that play a pivotal role in energy metabolism, fibre type transitions and muscle hypertrophy are discussed in detail.
Resumo:
Adaptive radiations often follow the evolution of key traits, such as the origin of the amniotic egg and the subsequent radiation of terrestrial vertebrates. The mechanism by which a species determines the sex of its offspring has been linked to critical ecological and life-history traits(1-3) but not to major adaptive radiations, in part because sex-determining mechanisms do not fossilize. Here we establish a previously unknown coevolutionary relationship in 94 amniote species between sex-determining mechanism and whether a species bears live young or lays eggs. We use that relationship to predict the sex-determining mechanism in three independent lineages of extinct Mesozoic marine reptiles (mosasaurs, sauropterygians and ichthyosaurs), each of which is known from fossils to have evolved live birth(4-7). Our results indicate that each lineage evolved genotypic sex determination before acquiring live birth. This enabled their pelagic radiations, where the relatively stable temperatures of the open ocean constrain temperature-dependent sex determination in amniote species. Freed from the need to move and nest on land(4,5,8), extreme physical adaptations to a pelagic lifestyle evolved in each group, such as the fluked tails, dorsal fins and wing-shaped limbs of ichthyosaurs. With the inclusion of ichthyosaurs, mosasaurs and sauropterygians, genotypic sex determination is present in all known fully pelagic amniote groups (sea snakes, sirenians and cetaceans), suggesting that this mode of sex determination and the subsequent evolution of live birth are key traits required for marine adaptive radiations in amniote lineages.
Resumo:
Fig trees are pollinated by fig wasps, which also oviposit in female flowers. The wasp larvae gall and eat developing seeds. Although fig trees benefit from allowing wasps to oviposit, because the wasp offspring disperse pollen, figs must prevent wasps from ovipositing in all flowers, or seed production would cease, and the mutualism would go extinct. In Ficus racemosa, we find that syconia (‘figs’) that have few foundresses (ovipositing wasps) are underexploited in the summer (few seeds, few galls, many empty ovules) and are overexploited in the winter (few seeds, many galls, few empty ovules). Conversely, syconia with many foundresses produce intermediate numbers of galls and seeds, regardless of season. We use experiments to explain these patterns, and thus, to explain how this mutualism is maintained. In the hot summer, wasps suffer short lifespans and therefore fail to oviposit in many flowers. In contrast, cooler temperatures in the winter permit longer wasp lifespans, which in turn allows most flowers to be exploited by the wasps. However, even in winter, only in syconia that happen to have few foundresses are most flowers turned into galls. In syconia with higher numbers of foundresses, interference competition reduces foundress lifespans, which reduces the proportion of flowers that are galled. We further show that syconia encourage the entry of multiple foundresses by delaying ostiole closure. Taken together, these factors allow fig trees to reduce galling in the wasp-benign winter and boost galling (and pollination) in the wasp-stressing summer. Interference competition has been shown to reduce virulence in pathogenic bacteria. Our results show that interference also maintains cooperation in a classic, cooperative symbiosis, thus linking theories of virulence and mutualism. More generally, our results reveal how frequency-dependent population regulation can occur in the fig-wasp mutualism, and how a host species can ‘set the rules of the game’ to ensure mutualistic behavior in its symbionts.
Resumo:
1. Fig trees (Ficus) are pollinated only by agaonid wasps, whose larvae also gall fig ovules. Each ovule develops into either a seed (when pollinated) or a wasp (when an egg is also laid inside) but not both. 2. Ovipositing wasps (foundresses) favour ovules near the centre of the enclosed inflorescence (syconium or 'fig'), leaving ovules near the outer wall to develop into seeds. This spatial stratification of wasps and seeds ensures reproduction in both partners, and thereby enables mutualism persistence. However, the mechanism(s) responsible remain(s) unknown. 3. Theory shows that foundresses will search for increasingly rare inner ovules and ignore outer ovules, as long as ovipositing in outer ovules is sufficiently slow and/or if inner ovules confer greater fitness to wasps. The fig-pollinator mutualism can therefore be stabilized by strong time constraints on foundresses and by offspring fitness gradients over variation in ovule position. 4. Female fig wasps cannot leave their galls without male assistance. We found that females in outer ovules were unlikely to be released. Inner ovules thus have added value to foundresses, because their female offspring are more likely to mate and disperse. 5. For those offspring that did emerge, gall position (inner/outer) and body size did not influence the order in which female pollinators exited syconia, nor did early emerging wasps enjoy increased life spans. 6. We also found that the life spans of female wasps nearly doubled when given access to moisture. We suggest that conflict resolution in the fig-pollinator mutualism may thus be influenced by tropical seasonality, because wasps may be less able to over-exploit ovules in dry periods due to time constraints.
Resumo:
Mutualisms are interspecific interactions in which both players benefit. Explaining their maintenance is problematic, because cheaters should outcompete cooperative conspecifics, leading to mutualism instability. Monoecious figs (Ficus) are pollinated by host-specific wasps (Agaonidae), whose larvae gall ovules in their "fruits'' (syconia). Female pollinating wasps oviposit directly into Ficus ovules from inside the receptive syconium. Across Ficus species, there is a widely documented segregation of pollinator galls in inner ovules and seeds in outer ovules. This pattern suggests that wasps avoid, or are prevented from ovipositing into, outer ovules, and this results in mutualism stability. However, the mechanisms preventing wasps from exploiting outer ovules remain unknown. We report that in Ficus rubiginosa, offspring in outer ovules are vulnerable to attack by parasitic wasps that oviposit from outside the syconium. Parasitism risk decreases towards the centre of the syconium, where inner ovules provide enemy-free space for pollinator offspring. We suggest that the resulting gradient in offspring viability is likely to contribute to selection on pollinators to avoid outer ovules, and by forcing wasps to focus on a subset of ovules, reduces their galling rates. This previously unidentified mechanism may therefore contribute to mutualism persistence independent of additional factors that invoke plant defences against pollinator oviposition, or physiological constraints on pollinators that prevent oviposition in all available ovules.
Resumo:
In mammals, the pharmaceutical ibuprofen (IB), a non-steroidal anti-inflammatory drug, primarily functions by reversibly inhibiting the cyclooxygenase (COX) pathway in the synthesis of eicosanoids (e.g. prostaglandins). Previous studies suggest that IB may act in a similar manner to interrupt production of eicosanoids reducing reproduction in the model crustacean Daphnia magna. On this basis withdrawal of IB should lead to the recovery of D. magna reproduction. Here we test whether the effect of IB is reversible in D. magna, as it is in mammals, by observing reproduction recovery following chronic exposure. D. magna (5-days old) were exposed to a range of IB concentrations (0, 20, 40 and 80 mg l(-1)) for 10 days followed by a 10 day recovery period in uncontaminated water. During the exposure period, individuals exposed to higher concentrations produced significantly fewer offspring. Thereafter, IB-stressed individuals produced offspring faster during recovery, having similar average population growth rates (PGR) (1.15-1.28) to controls by the end of the test. It appears that maternal daphnids are susceptible to IB during egg maturation. This is the first recorded recovery of reproduction in aquatic invertebrates that suffered reproductive inhibition during chronic exposure to a chemical stressor. Our results suggest a possible theory behind the compensatory fecundity that we referred to as 'catch-up reproduction'.
Resumo:
The costs of dispersal are an important factor promoting natal philopatry, thereby encouraging the formation of social groups. The red fox, Vulpes vulpes, exhibits a highly flexible social system and one that is thought to represent a possible stage in the evolution of more complex patterns of group-living. Although the potential benefits accruing to philopatric offspring have previously been studied in this species, the potential costs of dispersal have received less attention. We contrasted survival rates, nutritional status, injuries and reproductive output of dispersing and non-dispersing male and female foxes in an urban population to assess the relative costs of dispersal versus natal philopatry. Mortality rates were not significantly higher for dispersing foxes, either in the short- or long-term. There was no evidence of increased nutritional stress in dispersing individuals. Dispersing individuals did, however, exhibit greater levels of wounding, although this did not appear to affect survival. Dispersing females were more likely to miss a breeding opportunity early in their reproductive lifespan. In contrast, both dispersing and non-dispersing males were unlikely to breed in their first year. We conclude that the major fitness component in females affected by dispersing is age at first reproduction.
Resumo:
Emerging parasitoids of aphids encounter secondary plant chemistry from cues left by the mother parasitoid at oviposition and from the plant-feeding of the host aphid. In practice, however, it is secondary plant cheinistry oil the Surface of the aphid mummy which influences parasitoid olfactory behaviour. Offspring of Aphidius colemani reared oil Myzus persicae on artificial diet did no distinguish between the odours of bean and cabbage, but showed a clear preference for cabbage odour if sinigrin had been painted oil the back of the mummy. Similarly Aphidius rhopalosiphi reared on Metopolophium dirhodum on wheat preferred the odour of wheat plants grown near tomato plants to odour of wheat alone if the wheat plants oil which they had been reared had been exposed to the volatiles of nearby tomato plants. Aphidius rhopalosiphi reared on M dirhodum, and removed from the mummy before emergence, showed a preference for the odour of a different wheat cultivar if they had contacted a mummy from that cultivar, and similar results were obtained with A. colemani naturally emerged from M. persicae mummies. Aphidius colemani emerged from mummies oil one crucifer were allowed to contact in sequence (for 45 min each) mummies from two different crucifers. The mumber of attacks made in 10 min oil M. persicae was always significantly higher when aphids were feeding oil the same plant as the origin of the last MUMMY offered, or oil the second plant if aphids feeding on the third plant were not included. Chilling emerged A. colemani for 24 h at 5 degrees C appeared to erase the imprint of secondary plant chemistry, and they no longer showed host plant odour preferences in the olfactometer. When the parasitoids were chilled after three Successive mummy experiences, memory of the last experience appeared at least temporarily erased and preference was then shown for the chemistry of the second experience.
Resumo:
Prenatal testosterone excess leads to neuroendocrine, ovarian, and metabolic disruptions, culminating in reproductive phenotypes mimicking that of women with polycystic ovary syndrome (PCOS). The objective of this study was to determine the consequences of prenatal testosterone treatment on periovulatory hormonal dynamics and ovulatory outcomes. To generate prenatal testosterone-treated females, pregnant sheep were injected intramuscularly (days 30-90 of gestation, term = 147 days) with 100 mg of testosterone-propionate in cottonseed oil semi-weekly. Female offspring born to untreated control females and prenatal testosterone-treated females were then studied during their first two breeding seasons. Sheep were given two injections of prostaglandin F-2alpha 11 days apart, and blood samples were collected at 2-h intervals for 120 h, 10-min intervals for 8 h during the luteal phase (first breeding season only), and daily for an additional 15 days to characterize changes in reproductive hormonal dynamics. During the first breeding season, prenatal testosterone-treated females manifested disruptions in the timing and magnitude of primary gonadotropin surges, luteal defects, and reduced responsiveness to progesterone negative feedback. Disruptions in the periovulatory sequence of events during the second breeding season included: 1) delayed but increased preovulatory estradiol rise, 2) delayed and severely reduced primary gonadotropin surge in prenatal testosterone-treated females having an LH surge, 3) tendency for an amplified secondary FSH surge and a shift in the relative balance of FSH regulatory proteins, and 4) luteal responses that ranged from normal to anovulatory. These outcomes are likely to be of relevance to developmental origin of infertility disorders and suggest that differences in fetal exposure or fetal susceptibility to testosterone may account for the variability in reproductive phenotypes.
A qualitative host-pathogen interaction in the Theobroma cacao-Moniliophthora perniciosa pathosystem
Resumo:
The aim of this study was to test whether resistance of clones of Theobroma cacao ( cocoa) varied between isolates of Moniliophthora (formerly Crinipellis) perniciosa, the cause of witches' broom disease. Developing buds of vegetatively propagated T. cacao grown in greenhouses in the UK were inoculated with 16 000 spores of M. perniciosa per meristem in water, under conditions where water condensed on the inoculated shoot for at least 12 h after inoculation. The proportion of successful inoculations varied between clones and was inversely correlated with time to symptom production or broom formation. A specific interaction was demonstrated among three single-spore isolates of M. perniciosa and the clone Scavina 6 (SCA 6) and a variety of susceptible clones. Isolates Castenhal-I and APC3 were equally likely to infect SCA 6 and the other clones, but isolate Gran Couva A9 never infected SCA 6, although it was as virulent on the other clones. The interaction was maintained when the wetness period was extended to 70 h. Offspring of SCA 6 x Amelonado matings were all susceptible to both Castenhal-I and GC-A5, with no evidence of greater variability in susceptibility to GC-A5 than Castanhal-I. This suggests recessive inheritance of a single homozygous factor conferring resistance to GC-A5, from SCA 6. The progenies were slightly more susceptible to Castanhal-I than GC-A5. The implications for managing the disease are discussed.