925 resultados para nutrients and sulfur application
Resumo:
A distributed Lagrangian moving-mesh finite element method is applied to problems involving changes of phase. The algorithm uses a distributed conservation principle to determine nodal mesh velocities, which are then used to move the nodes. The nodal values are obtained from an ALE (Arbitrary Lagrangian-Eulerian) equation, which represents a generalization of the original algorithm presented in Applied Numerical Mathematics, 54:450--469 (2005). Having described the details of the generalized algorithm it is validated on two test cases from the original paper and is then applied to one-phase and, for the first time, two-phase Stefan problems in one and two space dimensions, paying particular attention to the implementation of the interface boundary conditions. Results are presented to demonstrate the accuracy and the effectiveness of the method, including comparisons against analytical solutions where available.
Resumo:
Despite the fact that mites were used at the dawn of forensic entomology to elucidate the postmortem interval, their use in current cases remains quite low for procedural reasons such as inadequate taxonomic knowledge. A special interest is focused on the phoretic stages of some mite species, because the phoront-host specificity allows us to deduce in many occasions the presence of the carrier (usually Diptera or Coleoptera) although it has not been seen in the sampling performed in situ or in the autopsy room. In this article, we describe two cases where Poecilochirus austroasiaticus Vitzthum (Acari: Parasitidae) was sampled in the autopsy room. In the first case, we could sample the host, Thanatophilus ruficornis (Küster) (Coleoptera: Silphidae), which was still carrying phoretic stages of the mite on the body. That attachment allowed, by observing starvation/feeding periods as a function of the digestive tract filling, the establishment of chronological cycles of phoretic behavior, showing maximum peaks of phoronts during arrival and departure from the corpse and the lowest values in the phase of host feeding. From the sarcosaprophagous fauna, we were able to determine in this case a minimum postmortem interval of 10 days. In the second case, we found no Silphidae at the place where the corpse was found or at the autopsy, but a postmortem interval of 13 days could be established by the high specificity of this interspecific relationship and the departure from the corpse of this family of Coleoptera.
Resumo:
In this paper, the global market potential of solar thermal, photovoltaic (PV) and combined photovoltaic/thermal (PV/T) technologies in current time and near future was discussed. The concept of the PV/T and the theory behind the PV/T operation were briefly introduced, and standards for evaluating technical, economic and environmental performance of the PV/T systems were addressed. A comprehensive literature review into R&D works and practical application of the PV/T technology was illustrated and the review results were critically analysed in terms of PV/T type and research methodology used. The major features, current status, research focuses and existing difficulties/barriers related to the various types of PV/T were identified. The research methods, including theoretical analyses and computer simulation, experimental and combined experimental/theoretical investigation, demonstration and feasibility study, as well as economic and environmental analyses, applied into the PV/T technology were individually discussed, and the achievement and problems remaining in each research method category were described. Finally, opportunities for further work to carry on PV/T study were identified. The review research indicated that air/water-based PV/T systems are the commonly used technologies but their thermal removal effectiveness is lower. Refrigerant/heat-pipe-based PV/Ts, although still in research/laboratory stage, could achieve much higher solar conversion efficiencies over the air/water-based systems. However, these systems were found a few technical challenges in practice which require further resolutions. The review research suggested that further works could be undertaken to (1) develop new feasible, economic and energy efficient PV/T systems; (2) optimise the structural/geometrical configurations of the existing PV/T systems; (3) study long term dynamic performance of the PV/T systems; (4) demonstrate the PV/T systems in real buildings and conduct the feasibility study; and (5) carry on advanced economic and environmental analyses. This review research helps finding the questions remaining in PV/T technology, identify new research topics/directions to further improve the performance of the PV/T, remove the barriers in PV/T practical application, establish the standards/regulations related to PV/T design and installation, and promote its market penetration throughout the world.
Resumo:
The concentrations of dissolved noble gases in water are widely used as a climate proxy to determine noble gas temperatures (NGTs); i.e., the temperature of the water when gas exchange last occurred. In this paper we make a step forward to apply this principle to fluid inclusions in stalagmites in order to reconstruct the cave temperature prevailing at the time when the inclusion was formed. We present an analytical protocol that allows us accurately to determine noble gas concentrations and isotope ratios in stalagmites, and which includes a precise manometrical determination of the mass of water liberated from fluid inclusions. Most important for NGT determination is to reduce the amount of noble gases liberated from air inclusions, as they mask the temperature-dependent noble gas signal from the water inclusions. We demonstrate that offline pre-crushing in air to subsequently extract noble gases and water from the samples by heating is appropriate to separate gases released from air and water inclusions. Although a large fraction of recent samples analysed by this technique yields NGTs close to present-day cave temperatures, the interpretation of measured noble gas concentrations in terms of NGTs is not yet feasible using the available least squares fitting models. This is because the noble gas concentrations in stalagmites are not only composed of the two components air and air saturated water (ASW), which these models are able to account for. The observed enrichments in heavy noble gases are interpreted as being due to adsorption during sample preparation in air, whereas the excess in He and Ne is interpreted as an additional noble gas component that is bound in voids in the crystallographic structure of the calcite crystals. As a consequence of our study's findings, NGTs will have to be determined in the future using the concentrations of Ar, Kr and Xe only. This needs to be achieved by further optimizing the sample preparation to minimize atmospheric contamination and to further reduce the amount of noble gases released from air inclusions.
Resumo:
We present a new subcortical structure shape modeling framework using heat kernel smoothing constructed with the Laplace-Beltrami eigenfunctions. The cotan discretization is used to numerically obtain the eigenfunctions of the Laplace-Beltrami operator along the surface of subcortical structures of the brain. The eigenfunctions are then used to construct the heat kernel and used in smoothing out measurements noise along the surface. The proposed framework is applied in investigating the influence of age (38-79 years) and gender on amygdala and hippocampus shape. We detected a significant age effect on hippocampus in accordance with the previous studies. In addition, we also detected a significant gender effect on amygdala. Since we did not find any such differences in the traditional volumetric methods, our results demonstrate the benefit of the current framework over traditional volumetric methods.
Resumo:
We present a new sparse shape modeling framework on the Laplace-Beltrami (LB) eigenfunctions. Traditionally, the LB-eigenfunctions are used as a basis for intrinsically representing surface shapes by forming a Fourier series expansion. To reduce high frequency noise, only the first few terms are used in the expansion and higher frequency terms are simply thrown away. However, some lower frequency terms may not necessarily contribute significantly in reconstructing the surfaces. Motivated by this idea, we propose to filter out only the significant eigenfunctions by imposing l1-penalty. The new sparse framework can further avoid additional surface-based smoothing often used in the field. The proposed approach is applied in investigating the influence of age (38-79 years) and gender on amygdala and hippocampus shapes in the normal population. In addition, we show how the emotional response is related to the anatomy of the subcortical structures.