981 resultados para nonequilibrium field dynamics
Resumo:
We used 2012 sap flow measurements to assess the seasonal dynamics of daily plant transpiration (ETc) in a high-density olive orchard (Olea europaea L. cv. ‘Arbequina’) with a well-watered (HI) control treatment A to supply 100 % of the crop water needs, and a moderately (MI) watered treatment B that replaced 70% of crop needs. To assure that treatment A was well-watered, we compared field daily ETc values against ETc obtained with the Penman-Monteith (PM) combination equation incorporating the Orgaz et al. (2007) bulk daily canopy conductance (gc) model, validated for our non-limiting conditions. We then tested the hypothesis of indirectly monitoring olive ETc from readily available vegetation index (VI) and ground-based plant water stress indicator. In the process we used the FAO56 dual crop coefficient (Kc) approach. For the HI olive trees we defined Kcb as the basal transpiration coefficient, and we related Kcb to remotely sensed Soil Adjusted Vegetation Index (SAVI) through a Kcb-SAVI functional relationship. For the MI treatment, we defined the actual transpiration ETc as the product of Kcb and the stress reduction coefficient Ks obtained as the ratio of actual to crop ETc, and we correlated Ks with MI midday stem water potential (ψst) values through a Ks-ψ functional relationship. Operational monitoring of ETc was then implemented with the ETc = Kcb(SAVI)Ks(ψ)ETo relationship stemmed from the FAO56 approach and validated taking as inputs collected SAVI and ψst data reporting to year 2011. Low validation error (6%) and high goodness-of-fit of prediction were observed (R2 = 0.94, RSME = 0.2 mm day-1, P = 0.0015), allowing to consider that under field conditions it is possible to predict ETc values for our hedgerow olive orchards if SAVI and water potential (ψst) values are known.
Resumo:
Monitoring agricultural crops constitutes a vital task for the general understanding of land use spatio-temporal dynamics. This paper presents an approach for the enhancement of current crop monitoring capabilities on a regional scale, in order to allow for the analysis of environmental and socio-economic drivers and impacts of agricultural land use. This work discusses the advantages and current limitations of using 250m VI data from the Moderate Resolution Imaging Spectroradiometer (MODIS) for this purpose, with emphasis in the difficulty of correctly analyzing pixels whose temporal responses are disturbed due to certain sources of interference such as mixed or heterogeneous land cover. It is shown that the influence of noisy or disturbed pixels can be minimized, and a much more consistent and useful result can be attained, if individual agricultural fields are identified and each field's pixels are analyzed in a collective manner. As such, a method is proposed that makes use of image segmentation techniques based on MODIS temporal information in order to identify portions of the study area that agree with actual agricultural field borders. The pixels of each portion or segment are then analyzed individually in order to estimate the reliability of the temporal signal observed and the consequent relevance of any estimation of land use from that data. The proposed method was applied in the state of Mato Grosso, in mid-western Brazil, where extensive ground truth data was available. Experiments were carried out using several supervised classification algorithms as well as different subsets of land cover classes, in order to test the methodology in a comprehensive way. Results show that the proposed method is capable of consistently improving classification results not only in terms of overall accuracy but also qualitatively by allowing a better understanding of the land use patterns detected. It thus provides a practical and straightforward procedure for enhancing crop-mapping capabilities using temporal series of moderate resolution remote sensing data.
Resumo:
Microplastics (MP) are omnipresent contaminants in the marine environment. Ingestion of MP has been reported for a wide range of marine biota, but to what extent the uptake by organisms affects the dynamics and fate of MP in the marine system has received little attention. My thesis explored this topic by integrating laboratory tests and experiments, field quantitative surveys of MP distribution and dynamics, and the use of specialised analytical techniques such as Attenuated-Total-Reflectance- (ATR) and imaging- Fourier Transformed Infrared Spectroscopy (FTIR). I compared different methodologies to extract MP from wild invertebrate specimens, and selected the use of potassium hydroxide (KOH) as the most cost-effective approach. I used this approach to analyse the MP contamination in various invertebrate species with different ecological traits from European salt marshes. I found that 96% of the analysed specimens (330) did not contain any MP. As preliminary environmental analyses showed high levels of environmental MP contamination, I hypothesised that most MP do not accumulate into organisms but are rather fast egested. I subsequently used laboratory multi-trophic experiments and a long-term field experiment using the filter-feeding mussel Mytilus galloprovincialis and the detritus feeding polychaete Hediste diversicolor to test the aforementioned hypothesis. Overall, results showed that MP are ingested but rapidly egested by marine invertebrates, which may limit MP transfer via predator-prey interactions but at the same time enhance their transfer via detrital pathways in the sediments. These processes seem to be extremely variable over time, with potential unexplored environmental consequences. This rapid dynamics also limits the conclusions that can be derived from static observations of MP contents in marine organisms, not fully capturing the real levels of potential contaminations by marine species. This emphasises the need to consider such dynamics in future work to measure the uptake rates by organisms in natural systems.
Resumo:
Using Computational Wind Engineering, CWE, for solving wind-related problems is still a challenging task today, mainly due to the high computational cost required to obtain trustworthy simulations. In particular, the Large Eddy Simulation, LES, has been widely used for evaluating wind loads on buildings. The present thesis assesses the capability of LES as a design tool for wind loading predictions through three cases. The first case is using LES for simulating the wind field around a ground-mounted rectangular prism in Atmospheric Boundary Layer (ABL) flow. The numerical results are validated with experimental results for seven wind attack angles, giving a global understanding of the model performance. The case with the worst model behaviour is investigated, including the spatial distribution of the pressure coefficients and their discrepancies with respect to experimental results. The effects of some numerical parameters are investigated for this case to understand their effectiveness in modifying the obtained numerical results. The second case is using LES for investigating the wind effects on a real high-rise building, aiming at validating the performance of LES as a design tool in practical applications. The numerical results are validated with the experimental results in terms of the distribution of the pressure statistics and the global forces. The mesh sensitivity and the computational cost are discussed. The third case is using LES for studying the wind effects on the new large-span roof over the Bologna stadium. The dynamic responses are analyzed and design envelopes for the structure are obtained. Although it is a numerical simulation before the traditional wind tunnel tests, i.e. the validation of the numerical results are not performed, the preliminary evaluations can effectively inform later investigations and provide the final design processes with deeper confidence regarding the absence of potentially unexpected behaviours.
Resumo:
The integration of quantitative data from movement analysis technologies is reshaping the analysis of athletes’ performances and injury mitigation, e.g., anterior cruciate ligament (ACL) rupture. Most of the movement assessments are performed in laboratory environments. Recent progress provides the chance to shift the paradigm to a more ecological approach with sport-specific elements and a closer examination of “real” movement patterns associated with performance and (ACL) injury risk. The present PhD thesis aimed at investigating the on-field motion patterns related to performance and injury prevention in young football players. The objectives of the thesis were: (I) in-lab measures of high-dynamics movements were used to validate wearable inertial sensors technology; (II) in-laboratory and on-field agility movement tasks were compared to inspect the effect of football-specific environment; (III) on-field analysis was conducted to challenge wearable sensors technology in the assessment of dangerous movement patterns towards the ACL rupture; (IV) an overview of technologies that could shape present and future assessment of ACL injury risk in daily practice was presented. The validity of wearables in the assessment of high-dynamics movements was confirmed. Relevant differences emerged between the movements performed in a laboratory setting and on the football pitch, supporting the inclusion of an ecological dynamics approach in preventive protocols. The on-field analysis of football-specific movement tasks demonstrated good reliability of wearable sensors and the presence of residual dangerous patterns in the injured players. A tool to inspect at-risk movement patterns on the field through objective measurements was presented. It discussed how potential alternatives to wearable inertial sensors embrace artificial intelligence and closer collaboration between clinical and technical expertise. The present thesis was meant to contribute to setting the basis for data-driven prevention protocols. A deeper comprehension of injury-related principles and counteractions will contribute to preserving athletes’ careers and health over time.
Resumo:
Turbulent plasmas inside tokamaks are modeled and studied using guiding center theory, applied to charged test particles, in a Hamiltonian framework. The equations of motion for the guiding center dynamics, under the conditions of a constant and uniform magnetic field and turbulent electrostatic field are derived by averaging over the fast gyroangle, for the first and second order in the guiding center potential, using invertible changes of coordinates such as Lie transforms. The equations of motion are then made dimensionless, exploiting temporal and spatial periodicities of the model chosen for the electrostatic potential. They are implemented numerically in Python. Fast Fourier Transform and its inverse are used. Improvements to the original Python scripts are made, notably the introduction of a power-law curve fitting to account for anomalous diffusion, the possibility to integrate the equations in two steps to save computational time by removing trapped trajectories, and the implementation of multicolored stroboscopic plots to distinguish between trapped and untrapped guiding centers. The post-processing of the results is made in MATLAB. The values and ranges of the parameters chosen for the simulations are selected based on numerous simulations used as feedback tools. In particular, a recurring value for the threshold to detect trapped trajectories is evidenced. Effects of the Larmor radius, the amplitude of the guiding center potential and the intensity of its second order term are studied by analyzing their diffusive regimes, their stroboscopic plots and the shape of guiding center potentials. The main result is the identification of cases anomalous diffusion depending on the values of the parameters (mostly the Larmor radius). The transitions between diffusive regimes are identified. The presence of highways for the super-diffusive trajectories are unveiled. The influence of the charge on these transitions from diffusive to ballistic behaviors is analyzed.
Resumo:
In this master's thesis, the formation of Primordial Black Holes (PBHs) in the context of multi-field inflation is studied. In these models, the interaction of isocurvature and curvature perturbations can lead to a significant enhancement of the latter, and to the subsequent production of PBHs. Depending on their mass, these can account for a significant fraction (or, in some cases, the entirety) of the universe's Dark Matter content. After studying the theoretical framework of generic N-field inflationary models, the focus is restricted to the two-field case, for which a few concrete realisations are analysed. A numerical code (written in Wolfram Mathematica) is developed to make quantitative predictions for the main inflationary observables, notably the scalar power spectra. Parallelly, the production of PBHs due to the dynamics of 2-field inflation is examined: their mass, as well as the fraction of Dark Matter they represent, is calculated for the models considered previously.
Resumo:
A broad sector of literature focuses on the relationship between fluid dynamics and gravitational systems. This thesis presents results that suggest the existence of a new kind of fluid/gravity duality not based on the holographic principle. The goal is to provide tools that allow us to systematically unearth hidden symmetries for reduced models of cosmology. The focus is on the field space of these models, i.e. the superspace. In fact, conformal isometries of the supermetric leave geodesics in the field space unaltered; this leads to symmetries of the models. An innovative aspect is the use of the Eisenhart-Duval’s lift. Using this method, systems constrained by a potential can be treated as free ones. Moreover, charges explicitly dependent on time, i.e. dynamical, can be found. A detailed analysis is carried out on three basic models of homogenous cosmology: i) flat Friedmann-Lemaître-Robertson-Walker’s isotropic universe filled with a massless scalar field; ii) Schwarzschild’s black hole mechanics and its extension to vacuum (A)dS gravity; iii) Bianchi’s anisotropic type I universe with a massless scalar field. The results show the presence of a hidden Schrödinger’s symmetry which, being intrinsic to both Navier-Stokes’ and Schrödinger’s equations, indicates a correspondence between cosmology and hydrodynamics. Furthermore, the central extension of this algebra explicitly relates two concepts. The first is the number of particles coming from the fluid picture; while the second is the ratio between the IR and UV cutoffs that weighs how much a theory has of “classical” over “quantum”. This suggests a spacetime that emerges from an underlying world which is described by quantum building blocks. These quanta statistically conspire to appear as gravitational phenomena from a macroscopic point of view.
Resumo:
The internal dynamics of elliptical galaxies in clusters depends on many factors, including the environment in which the galaxy is located. In addition to the strong encounters with the other galaxies, we can also consider the gravitational interaction with the ubiquitous Cluster Tidal Field (CTF). As recognized in many studies, one possible way in which CTF affects the dynamics of galaxies inside the cluster is related to the fact that they may start oscillating as “rigid bodies” around their equilibrium positions in the field, with the periods of these oscillations curiously similar to those of stellar orbits in the outer parts of galaxies. Resonances between the two motions are hence expected and this phenomenon could significantly contribute to the formation of the Intracluster Stellar Population (ISP), whose presence is abundantly confirmed by observations. In this thesis work, we propose to study the motion of an elliptical galaxy, modelled as a rigid body, in the CTF, especially when its center of mass traces a quasi-circular orbit in the cluster gravitational potential. This case extends and generalizes the previous models and findings, proceeding towards a much more realistic description of galaxy motion. In addition to this, the presence of a further oscillation, namely that of the entire galaxy along its orbit, will possibly increase the probability of having resonances and, consequently, the rate of ISP production nearly to observed values. Thus, after reviewing the dynamics of a rigid body in a generic force field, we will assess some physically relevant studies and report their main results, discussing their implications with respect to our problem. We will conclude our discussion focusing on the more realistic scenario of an elliptical galaxy whose center of mass moves on a quasi-circular orbit in a spherically symmetric potential. The derivation of the fundamental equations of motion will serve as the basis for future modelling and discussions.
Resumo:
Very high field (29)Si-NMR measurements using a fully (29)Si-enriched URu(2)Si(2) single crystal were carried out in order to microscopically investigate the hidden order (HO) state and adjacent magnetic phases in the high field limit. At the lowest measured temperature of 0.4 K, a clear anomaly reflecting a Fermi surface instability near 22 T inside the HO state is detected by the (29)Si shift, (29)K(c). Moreover, a strong enhancement of (29)K(c) develops near a critical field H(c) ≃ 35.6 T, and the ^{29}Si-NMR signal disappears suddenly at H(c), indicating the total suppression of the HO state. Nevertheless, a weak and shifted (29)Si-NMR signal reappears for fields higher than H(c) at 4.2 K, providing evidence for a magnetic structure within the magnetic phase caused by the Ising-type anisotropy of the uranium ordered moments.
Resumo:
As graphene has become one of the most important materials, there is renewed interest in other similar structures. One example is silicene, the silicon analogue of graphene. It shares some of the remarkable graphene properties, such as the Dirac cone, but presents some distinct ones, such as a pronounced structural buckling. We have investigated, through density functional based tight-binding (DFTB), as well as reactive molecular dynamics (using ReaxFF), the mechanical properties of suspended single-layer silicene. We calculated the elastic constants, analyzed the fracture patterns and edge reconstructions. We also addressed the stress distributions, unbuckling mechanisms and the fracture dependence on the temperature. We analysed the differences due to distinct edge morphologies, namely zigzag and armchair.
Resumo:
Local parity-odd domains are theorized to form inside a quark-gluon plasma which has been produced in high-energy heavy-ion collisions. The local parity-odd domains manifest themselves as charge separation along the magnetic field axis via the chiral magnetic effect. The experimental observation of charge separation has previously been reported for heavy-ion collisions at the top RHIC energies. In this Letter, we present the results of the beam-energy dependence of the charge correlations in Au+Au collisions at midrapidity for center-of-mass energies of 7.7, 11.5, 19.6, 27, 39, and 62.4 GeV from the STAR experiment. After background subtraction, the signal gradually reduces with decreased beam energy and tends to vanish by 7.7 GeV. This implies the dominance of hadronic interactions over partonic ones at lower collision energies.
Resumo:
The role of orbital differentiation on the emergence of superconductivity in the Fe-based superconductors remains an open question to the scientific community. In this investigation, we employ a suitable microscopic spin probe technique, namely Electron Spin Resonance (ESR), to investigate this issue on selected chemically substituted BaFe2As2 single crystals. As the spin-density wave (SDW) phase is suppressed, we observe a clear increase of the Fe 3d bands anisotropy along with their localization at the FeAs plane. Such an increase of the planar orbital content is interestingly independent of the chemical substitution responsible for suppressing the SDW phase. As a consequence, the magnetic fluctuations in combination with this particular symmetry of the Fe 3d bands are propitious ingredients for the emergence of superconductivity in this class of materials.
Resumo:
The 'dilution effect' (DE) hypothesis predicts that diverse host communities will show reduced disease. The underlying causes of pathogen dilution are complex, because they involve non-additive (driven by host interactions and differential habitat use) and additive (controlled by host species composition) mechanisms. Here, we used measures of complementarity and selection traditionally employed in the field of biodiversity-ecosystem function (BEF) to quantify the net effect of host diversity on disease dynamics of the amphibian-killing fungus Batrachochytrium dendrobatidis (Bd). Complementarity occurs when average infection load in diverse host assemblages departs from that of each component species in uniform populations. Selection measures the disproportionate impact of a particular species in diverse assemblages compared with its performance in uniform populations, and therefore has strong additive and non-additive properties. We experimentally infected tropical amphibian species of varying life histories, in single- and multi-host treatments, and measured individual Bd infection loads. Host diversity reduced Bd infection in amphibians through a mechanism analogous to complementarity (sensu BEF), potentially by reducing shared habitat use and transmission among hosts. Additionally, the selection component indicated that one particular terrestrial species showed reduced infection loads in diverse assemblages at the expense of neighbouring aquatic hosts becoming heavily infected. By partitioning components of diversity, our findings underscore the importance of additive and non-additive mechanisms underlying the DE.
Resumo:
This study investigates the practices involved in the production of knowledge about menopause at Caism, Unicamp, a reference center for public policies for women's health. Gynecological appointments and psychological support meetings were observed, and women and doctors were interviewed in order to identify what discourse circulates there and how different actors are brought in to ensure that the knowledge produced attains credibility and travels beyond the boundaries of the teaching hospital to become universal. The analysis is based on localized studies aligned with social studies of science and technology.