828 resultados para non-state actors
Resumo:
Although Common Pool Resources (CPRs) make up a significant share of total income for rural households in Ethiopia and elsewhere in developing world, limited access to these resources and environmental degradation threaten local livelihoods. As a result, the issues of management, governance of CPRs and how to prevent their over-exploitation are of great importance for development policy. This study examines the current state and dynamics of CPRs and overall resource governance system of the Lake Tana sub-basin. This research employed the modified form of Institutional Analysis and Development (IAD) framework. The framework integrates the concept of Socio-Ecological Systems (SES) and Interactive Governance (IG) perspectives where social actors, institutions, the politico-economic context, discourses and ecological features across governance and government levels were considered. It has been observed that overexploitation, degradation and encroachment of CPRs have increased dramatically and this threatens the sustainability of Lake Tana ecosystem. The stakeholder analysis result reveals that there are multiple stakeholders with diverse interest in and power over CPRs. The analysis of institutional arrangements reveals that the existing formal rules and regulations governing access to and control over CPRs could not be implemented and were not effective to legally bind and govern CPR user’s behavior at the operational level. The study also shows that a top-down and non-participatory policy formulation, law and decision making process overlooks the local contexts (local knowledge and informal institutions). The outcomes of examining the participation of local resource users, as an alternative to a centralized, command-and-control, and hierarchical approach to resource management and governance, have called for a fundamental shift in CPR use, management and governance to facilitate the participation of stakeholders in decision making. Therefore, establishing a multi-level stakeholder governance system as an institutional structure and process is necessary to sustain stakeholder participation in decision-making regarding CPR use, management and governance.
Resumo:
This PhD thesis investigates the potential use of science communication models to engage a broader swathe of actors in decision making in relation to scientific and technological innovation in order to address possible democratic deficits in science and technology policy-making. A four-pronged research approach has been employed to examine different representations of the public(s) and different modes of engagement. The first case study investigates whether patient-groups could represent an alternative needs-driven approach to biomedical and health sciences R & D. This is followed by enquiry into the potential for Science Shops to represent a bottom-up approach to promote research and development of local relevance. The barriers and opportunities for the involvement of scientific researchers in science communication are next investigated via a national survey which is comparable to a similar survey conducted in the UK. The final case study investigates to what extent opposition or support regarding nanotechnology (as an emerging technology) is reflected amongst the YouTube user community and the findings are considered in the context of how support or opposition to new or emerging technologies can be addressed using conflict resolution based approaches to manage potential conflict trajectories. The research indicates that the majority of communication exercises of relevance to science policy and planning take the form of a one-way flow of information with little or no facility for public feedback. This thesis proposes that a more bottom-up approach to research and technology would help broaden acceptability and accountability for decisions made relating to new or existing technological trajectories. This approach could be better integrated with and complementary to government, institutional, e.g. university, and research funding agencies activities and help ensure that public needs and issues are better addressed directly by the research community. Such approaches could also facilitate empowerment of societal stakeholders regarding scientific literacy and agenda-setting. One-way information relays could be adapted to facilitate feedback from representative groups e.g. Non-governmental organisations or Civil Society Organisations (such as patient groups) in order to enhance the functioning and socio-economic relevance of knowledge-based societies to the betterment of human livelihoods.
Resumo:
Time-dependent density functional theory (TDDFT) has broad application in the study of electronic response, excitation and transport. To extend such application to large and complex systems, we develop a reformulation of TDDFT equations in terms of non-orthogonal localized molecular orbitals (NOLMOs). NOLMO is the most localized representation of electronic degrees of freedom and has been used in ground state calculations. In atomic orbital (AO) representation, the sparsity of NOLMO is transferred to the coefficient matrix of molecular orbitals (MOs). Its novel use in TDDFT here leads to a very simple form of time propagation equations which can be solved with linear-scaling effort. We have tested the method for several long-chain saturated and conjugated molecular systems within the self-consistent charge density-functional tight-binding method (SCC-DFTB) and demonstrated its accuracy. This opens up pathways for TDDFT applications to large bio- and nano-systems.
Resumo:
BACKGROUND: Dropouts and missing data are nearly-ubiquitous in obesity randomized controlled trails, threatening validity and generalizability of conclusions. Herein, we meta-analytically evaluate the extent of missing data, the frequency with which various analytic methods are employed to accommodate dropouts, and the performance of multiple statistical methods. METHODOLOGY/PRINCIPAL FINDINGS: We searched PubMed and Cochrane databases (2000-2006) for articles published in English and manually searched bibliographic references. Articles of pharmaceutical randomized controlled trials with weight loss or weight gain prevention as major endpoints were included. Two authors independently reviewed each publication for inclusion. 121 articles met the inclusion criteria. Two authors independently extracted treatment, sample size, drop-out rates, study duration, and statistical method used to handle missing data from all articles and resolved disagreements by consensus. In the meta-analysis, drop-out rates were substantial with the survival (non-dropout) rates being approximated by an exponential decay curve (e(-lambdat)) where lambda was estimated to be .0088 (95% bootstrap confidence interval: .0076 to .0100) and t represents time in weeks. The estimated drop-out rate at 1 year was 37%. Most studies used last observation carried forward as the primary analytic method to handle missing data. We also obtained 12 raw obesity randomized controlled trial datasets for empirical analyses. Analyses of raw randomized controlled trial data suggested that both mixed models and multiple imputation performed well, but that multiple imputation may be more robust when missing data are extensive. CONCLUSION/SIGNIFICANCE: Our analysis offers an equation for predictions of dropout rates useful for future study planning. Our raw data analyses suggests that multiple imputation is better than other methods for handling missing data in obesity randomized controlled trials, followed closely by mixed models. We suggest these methods supplant last observation carried forward as the primary method of analysis.
Resumo:
Strong coupling between a two-level system (TLS) and bosonic modes produces dramatic quantum optics effects. We consider a one-dimensional continuum of bosons coupled to a single localized TLS, a system which may be realized in a variety of plasmonic, photonic, or electronic contexts. We present the exact many-body scattering eigenstate obtained by imposing open boundary conditions. Multiphoton bound states appear in the scattering of two or more photons due to the coupling between the photons and the TLS. Such bound states are shown to have a large effect on scattering of both Fock- and coherent-state wave packets, especially in the intermediate coupling-strength regime. We compare the statistics of the transmitted light with a coherent state having the same mean photon number: as the interaction strength increases, the one-photon probability is suppressed rapidly, and the two- and three-photon probabilities are greatly enhanced due to the many-body bound states. This results in non-Poissonian light. © 2010 The American Physical Society.
Resumo:
Cells are fundamental units of life, but little is known about evolution of cell states. Induced pluripotent stem cells (iPSCs) are once differentiated cells that have been re-programmed to an embryonic stem cell-like state, providing a powerful platform for biology and medicine. However, they have been limited to a few mammalian species. Here we found that a set of four mammalian transcription factor genes used to generate iPSCs in mouse and humans can induce a partially reprogrammed pluripotent stem cell (PRPSCs) state in vertebrate and invertebrate model organisms, in mammals, birds, fish, and fly, which span 550 million years from a common ancestor. These findings are one of the first to show cross-lineage stem cell-like induction, and to generate pluripotent-like cells for several of these species with in vivo chimeras. We suggest that the stem-cell state may be highly conserved across a wide phylogenetic range. DOI:http://dx.doi.org/10.7554/eLife.00036.001.
Resumo:
Olfactory cues play an integral, albeit underappreciated, role in mediating vertebrate social and reproductive behaviour. These cues fluctuate with the signaller's hormonal condition, coincident with and informative about relevant aspects of its reproductive state, such as pubertal onset, change in season and, in females, timing of ovulation. Although pregnancy dramatically alters a female's endocrine profiles, which can be further influenced by fetal sex, the relationship between gestation and olfactory cues is poorly understood. We therefore examined the effects of pregnancy and fetal sex on volatile genital secretions in the ring-tailed lemur (Lemur catta), a strepsirrhine primate possessing complex olfactory mechanisms of reproductive signalling. While pregnant, dams altered and dampened their expression of volatile chemicals, with compound richness being particularly reduced in dams bearing sons. These changes were comparable in magnitude with other, published chemical differences among lemurs that are salient to conspecifics. Such olfactory 'signatures' of pregnancy may help guide social interactions, potentially promoting mother-infant recognition, reducing intragroup conflict or counteracting behavioural mechanisms of paternity confusion; cues that also advertise fetal sex may additionally facilitate differential sex allocation.
Resumo:
Raman and infrared spectra are reported for rhodanine, 3-aminorhodanine and 3-methylrhodanine in the solid state. Comparisons of the spectra of non-deuterated/deuterated species facilitate discrimination of the bands associated with N-H, NH2, CH2 and CH3 vibrations. DFT calculations of structures and vibrational spectra of isolated gas-phase molecules, at the B3-LYP/cc-pVTZ and B3-PW91/cc-pVTZ level, enable normal coordinate analyses in terms of potential energy distributions for each vibrational normal mode. The cis amide I mode of rhodanine is associated with bands at ~ 1713 and 1779 cm-1, whereas a Raman and IR band at ~ 1457 cm-1 is assigned to the amide II mode. The thioamide II and III modes of rhodanine, 3-aminorhodanine and 3-methylrhodanine are observed at 1176 and 1066/1078; 1158 and 1044; 1107 and 984 cm-1 in the Raman and at 1187 and 1083; 1179 and 1074; 1116 and 983 cm-1 in the IR spectra, respectively.
Resumo:
We study information rates of time-varying flat-fading channels (FFC) modeled as finite-state Markov channels (FSMC). FSMCs have two main applications for FFCs: modeling channel error bursts and decoding at the receiver. Our main finding in the first application is that receiver observation noise can more adversely affect higher-order FSMCs than lower-order FSMCs, resulting in lower capacities. This is despite the fact that the underlying higher-order FFC and its corresponding FSMC are more predictable. Numerical analysis shows that at low to medium SNR conditions (SNR lsim 12 dB) and at medium to fast normalized fading rates (0.01 lsim fDT lsim 0.10), FSMC information rates are non-increasing functions of memory order. We conclude that BERs obtained by low-order FSMC modeling can provide optimistic results. To explain the capacity behavior, we present a methodology that enables analytical comparison of FSMC capacities with different memory orders. We establish sufficient conditions that predict higher/lower capacity of a reduced-order FSMC, compared to its original high-order FSMC counterpart. Finally, we investigate the achievable information rates in FSMC-based receivers for FFCs. We observe that high-order FSMC modeling at the receiver side results in a negligible information rate increase for normalized fading rates fDT lsim 0.01.
Resumo:
This paper concerns the use of a non-destructive ultrasonic technique for characterising the rheological properties of solder paste and specifically, the use of through-mode microsecond ultrasonic pulses for evaluation of viscoelastic properties of paste materials at the molecular level. Ultrasonic techniques are a widely used and a reliable form of non-destructive testing of materials. This is because techniques such as ultrasounds while used for testing or monitoring material properties, has offered immense benefits in applications where access to the sample is restricted or when handling the sample for testing could interfere with the monitoring or analysis process. Very often, this would mean that the measurements taken are not a true representation of the behaviour of the material (due to externally incorporated changes into the material's physical state during the removal or testing process). Ultrasonic based techniques are being increasingly used for quality control and production monitoring functions which requires evaluation of the changes in material properties over wide range of industrial applications such as cement paste quality, plastic/polymer extrusion process, dough, and even sugar content in beverage drinks. In addition, ultrasound techniques are of great interest for their capacity to take rapid measurements in systems which are optically opaque. The viscometer and rheometer are two of the most widely used rheological instruments used in industry for monitoring the quality of solder pastes, during the production and packaging stage. One of the potential limitations of viscometer and rheometer based measurements is that the collection and preparation of the solder paste samples can irreversibly alter the structure and flow behaviour of the sample. Hence the measurement may not represent the actual quality of the whole production batch. Secondly, rheological measurements and the interpretation of rheological data is a very technical and time consuming process, which requires professionally trained R&D personnel. It is for these reasons that materials suppliers (who formulate and produce solder pastes) and solder paste consumers (especially, contract electronics manufacturers) are keen to see the development of simple, easy to use and accurate techniques for the theological characterisation of solder pastes. The results from the work show that the technique can be used by R&D personnel involved in paste formulation and manufacture to monitor the batch-to-batch quality and consistency.
Resumo:
This paper investigates the application of a non-destructive ultrasonic technique for characterising the rheological properties of solder paste through the use of through-mode microsecond ultrasonic pulses for evaluation of viscoelastic properties of lead-free solder paste containing different types of flux. Ultrasonic techniques offer a robust and reliable form of non-destructive testing of materials where access to the sample is restricted or when sample handling can interfere with the monitoring or analysis process due to externally incorporated changes to the material’s physical state or accidental contamination during the removal or testing process. Ultrasonic based techniques are increasingly used for quality control and production monitoring functions which requires evaluation of changes in material properties for a wide range of industrial applications such as cement paste quality, plastic/polymer extrusion process, dough and even sugar content in beverage drinks. In addition, ultrasound techniques are of great interest for their capability to take rapid measurements in systems which are optically opaque. The conventional industry approach for characterising the rheological properties of suspensions during processing/packaging stage is mainly through the use of viscometer and some through the use of rheometer. One of the potential limitations of viscometer and rheometer based measurements is that the collection and preparation of the solder paste samples can irreversibly alter the structure and flow behaviour of the sample. Hence the measurement may not represent the actual quality of the whole production batch. Secondly, rheological measurements and the interpretation of rheological data is a very technical and time consuming process, which requires professionally trained R&D personnel. The ultrasound technique being proposed provides simple, yet accurate and easy to use solution for the in-situ rheological characterisation of solder pastes which will benefit the materials suppliers (who formulate and produce solder pastes) and solder paste consumers (especially, contract electronics manufacturers). The results from the work show that the technique can be used by R&D personnel involved in paste formulation and manufacture to monitor the batch-to-batch quality and consistency.
Resumo:
Ecological indicators are used extensively as tools to manage environmental resources. In the oceans, indicators of plankton can be measured using a variety of observing systems including: mooring stations, ships, autonomous floats and ocean colour remote sensing. Given the broad range of temporal and spatial sampling resolutions of these different observing systems, as well as discrepancies in measurements obtained from different sensors, the estimation and interpretation of plankton indicators can present significant challenges. To provide support to the assessment of the state of the marine ecosystem, we propose a suite of plankton indicators and subsequently classify them in an ecological framework that characterizes key attributes of the ecosystem. We present two case studies dealing with plankton indicators of biomass, size structure and phenology, estimated using the most spatially extensive and longest in situ and remote-sensing observations. Discussion of these studies illustrates how some of the challenges in estimating and interpreting plankton indicators may be addressed by using for example relative measurement thresholds, interpolation procedures and delineation of biogeochemical provinces. We demonstrate that one of the benefits attained, when analyzing a suite of plankton indicators classified in an ecological framework, is the elucidation of non-trivial changes in composition, structure and functioning of the marine ecosystem.
Resumo:
Marine ecosystems are complex networks of organisms interacting either directly or indirectly while under the influence of the physical and chemical properties of the medium they inhabit. The interplay between these biological agents and their abiotic environment results in complex non-linear responses to individual and multiple stressors, influenced by feedbacks between these organisms and their environment. These ecosystems provide key services that benefit humanity such as food provisioning via the transfer of energy to exploited fish populations or climate regulation via the sinking, subsequent mineralization and ultimately storage of carbon in the ocean interior. These key characteristics or emergent features of marine ecosystems are subject to rapid change (e.g. regime shifts; Alheit et al., 2005 and Scheffer et al., 2009), with outcomes that are largely unpredictable in a deterministic sense. The North Atlantic Ocean is host to a number of such systems which are collectively being influenced by the unique physical and chemical features of this ocean basin, such as the Atlantic Meridional Overturning Circulation (AMOC), the basin’s ventilation with the Arctic Ocean, the dynamics of heat transport via the Gulf Stream and the formation of deep water at high latitudes. These features drive the solubility and biological pumps and support the production and environments that results in large exploited fish stocks. Our knowledge of its functioning as a coupled system, and in particular how it will respond to change, is still limited despite the scientific effort exerted over more than 100 years. This is due in part to the difficulty of providing synoptic overviews of a vast area, and to the fact that most fieldwork provides only snapshots of the complex physical, chemical and biological processes and their interactions. These constraints have in the past limited the development of a mechanistic understanding of the basin as a whole, and thus of the services it provides.
Resumo:
Thin-zone TAP reactor is presented as a basis of the new state-by-state transient screening approach which has been proposed by the authors for non-steady-state kinetic characterization of industrial catalysts. The general thin-zone TAP reactor model is described, and its mathematical status is justified analytically. It is shown that this model provides high enough accuracy to be applicable in the wide conversion interval (up to 90%), which is an important advantage of this approach compared with the traditional differential reactor.
Resumo:
Some non-classical properties such as squeezing, sub-Poissonian photon statistics or oscillations in photon-number distributions may survive longer in a phase-sensitive environment than in a phase-insensitive environment. We examine if entanglement, which is an inter-mode non-classical feature, can also survive longer in a phase-sensitive environment. Differently from the single-mode case, we find that making the environment phase-sensitive does not aid in prolonging the inter-mode non-classical nature, i.e. entanglement.