911 resultados para non-ideal source
Resumo:
Radiocarbon (14C) measurements of both organic carbon (OC) and elemental carbon (EC) allow a more detailed source apportionment, leading to a full and unambiguous distinction and quantification of the contributions from non-fossil and fossil sources. A thermal-optical method with a commercial OC/EC analyzer to isolate water-insoluble OC (WIOC) and EC for their subsequent 14C measurement was applied for the first time to filtered precipitation samples collected at a costal site in Portugal and at a continental site in Switzerland. Our results show that WIOC in precipitation is dominated by non-fossil sources such as biogenic and biomass-burning emissions regardless of rain origins and seasons, whereas EC sources are shared by fossil-fuel combustion and biomass burning. In addition, monthly variation of WIOC in Switzerland was characterized by higher abundance in warm than in cold seasons, highlighting the importance of biogenic emissions to particulate carbon in rainwater. Samples with high particulate carbon concentrations in Portugal were found to be associated with increased biogenic input. Despite the importance of non-fossil sources, fossil emissions account for approximately 20% of particulate carbon in wet deposition for our study, which is in line with fossil contribution in bulk rainwater dissolved organic carbon as well as aerosol WIOC and EC estimated by the 14C approach from other studies.
Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry
Resumo:
Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make its deployment at sufficient sites to determine regional characteristics impractical. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2:5, and PM10, i.e., PM with aerodynamic diameters smaller than 1, 2.5, and 10 μm, respectively), collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g., AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60–91 %) achieved using this technique, together with low detection limits (0.8 μg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon ions, ions containing oxygen, and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning, and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g., filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially resolved longterm data sets.
Resumo:
AIM To identify the ideal timing of first permanent molar extraction to reduce the future need for orthodontic treatment. MATERIALS AND METHODS A computerised database and subsequent manual search was performed using Medline database, Embase and Ovid, covering the period from January 1946 to February 2013. Two reviewers (JE and ME) extracted the data independently and evaluated if the studies matched the inclusion criteria. Inclusion criteria were specification of the follow-up with clinical examination or analysis of models, specification of the chronological age or dental developmental stage at the time of extraction, no treatment in between, classification of the treatment result into perfect, good, average and poor. The search was limited to human studies and no language limitations were set. RESULTS The search strategy resulted in 18 full-text articles, of which 6 met the inclusion criteria. By pooling the data from maxillary sites, good to perfect clinical outcome was estimated in 72% (95% confidence interval 63%-82%). Extractions at the age of 8-10.5 years tended to show better spontaneous clinical outcomes compared to the other age groups. By pooling the data from mandibular sites, extractions performed at the age of 8-10.5 and 10.5-11.5 years showed significantly superior spontaneous clinical outcome with a probability of 50% and 59% likelihood, respectively, to achieve good to perfect clinical result (p<0.05) compared to the other age groups (<8 years of age: 34%, >11.5 years of age: 44%). CONCLUSION Prevention of complications after first permanent molars extractions is an important issue. The overall success rate of spontaneous clinical outcome for maxillary extraction of first permanent molars was superior to mandibular extraction. Extractions of mandibular first permanent molars should be performed between 8 and 11.5 years of age in order to achieve a good spontaneous clinical outcome. For the extraction in the maxilla, no firm conclusions concerning the ideal extraction timing could be drawn.
Resumo:
OBJECTIVE To evaluate the role of an ultra-low-dose dual-source CT coronary angiography (CTCA) scan with high pitch for delimiting the range of the subsequent standard CTCA scan. METHODS 30 patients with an indication for CTCA were prospectively examined using a two-scan dual-source CTCA protocol (2.0 × 64.0 × 0.6 mm; pitch, 3.4; rotation time of 280 ms; 100 kV): Scan 1 was acquired with one-fifth of the tube current suggested by the automatic exposure control software [CareDose 4D™ (Siemens Healthcare, Erlangen, Germany) using 100 kV and 370 mAs as a reference] with the scan length from the tracheal bifurcation to the diaphragmatic border. Scan 2 was acquired with standard tube current extending with reduced scan length based on Scan 1. Nine central coronary artery segments were analysed qualitatively on both scans. RESULTS Scan 2 (105.1 ± 10.1 mm) was significantly shorter than Scan 1 (127.0 ± 8.7 mm). Image quality scores were significantly better for Scan 2. However, in 5 of 6 (83%) patients with stenotic coronary artery disease, a stenosis was already detected in Scan 1 and in 13 of 24 (54%) patients with non-stenotic coronary arteries, a stenosis was already excluded by Scan 1. Using Scan 2 as reference, the positive- and negative-predictive value of Scan 1 was 83% (5 of 6 patients) and 100% (13 of 13 patients), respectively. CONCLUSION An ultra-low-dose CTCA planning scan enables a reliable scan length reduction of the following standard CTCA scan and allows for correct diagnosis in a substantial proportion of patients. ADVANCES IN KNOWLEDGE Further dose reductions are possible owing to a change in the individual patient's imaging strategy as a prior ultra-low-dose CTCA scan may already rule out the presence of a stenosis or may lead to a direct transferal to an invasive catheter procedure.
Resumo:
Fine carbonaceous aerosols (CAs) is the key factor influencing the currently filthy air in megacities in China, yet few studies simultaneously focus on the origins of different CAs species using specific and powerful source tracers. Here, we present a detailed source apportionment for various CAs fractions, including organic carbon (OC), water-soluble OC (WSOC), water-insoluble OC (WIOC), elemental carbon (EC) and secondary OC (SOC) in the largest cities of North (Beijing, BJ) and South China (Guangzhou, GZ), using the measurements of radiocarbon and anhydrosugars. Results show that non-fossil fuel sources such as biomass burning and biogenic emission make a significant contribution to the total CAs in Chinese megacities: 56±4 in BJ and 46±5% in GZ, respectively. The relative contributions of primary fossil carbon from coal and liquid petroleum combustions, primary non-fossil carbon and secondary organic carbon (SOC) to total carbon are 19, 28 and 54% in BJ, and 40, 15 and 46% in GZ, respectively. Non-fossil fuel sources account for 52 in BJ and 71% in GZ of SOC, respectively. These results suggest that biomass burning has a greater influence on regional particulate air pollution in North China than in South China. We observed an unabridged haze bloom-decay process in South China, which illustrates that both primary and secondary matter from fossil sources played a key role in the blooming phase of the pollution episode, while haze phase is predominantly driven by fossil-derived secondary organic matter and nitrate.
Resumo:
Cancer is the second leading cause of death in the United States. With the advent of new technologies, changes in health care delivery, and multiplicity of provider types that patients must see, cancer care management has become increasingly complex. The availability of cancer health information has been shown to help cancer patients cope with the management and effects of their cancers. As a result, more cancer patients are using the internet to find resources that can aid in decision-making and recovery. ^ The Health Information National Trends Survey (HINTS) is a nationally representative survey designed to collect information about the experiences of cancer and non-cancer adults with health information sources. The HINTS survey focused on both conventional sources as well as newer technologies, particularly the internet. This study is a descriptive analysis of the HINTS 2003 and HINTS 2005 survey data. The purpose of the research is to explore the general trends in health information seeking and use by US adults, and especially by cancer patients. ^ From 2003 to 2005, internet use for various health-related activities appears to have increased among adults with and without cancer. Differences were found between the groups in the general trust in information media, particularly the internet. Non-cancer respondents tended to have greater trust in information media than cancer respondents. ^ The latter portion of this work examined characteristics of HINTS respondents that were thought to be relevant to how much trust individuals placed in the internet as a source of health information. Trust in health information from the internet was significantly greater among younger adults, higher-earning households, internet users, online seekers of health or cancer information, and those who found online cancer information useful. ^
Resumo:
Background. Nosocomial infections are a source of concern for many hospitals in the United States and worldwide. These infections are associated with increased morbidity, mortality and hospital costs. Nosocomial infections occur in ICUs at a rate which is five times greater than those in general wards. Understanding the reasons for the higher rates can ultimately help reduce these infections. The literature has been weak in documenting a direct relationship between nosocomial infections and non-traditional risk factors, such as unit staffing or patient acuity.^ Objective. To examine the relationship, if any, between nosocomial infections and non-traditional risk factors. The potential non-traditional risk factors we studied were the patient acuity (which comprised of the mortality and illness rating of the patient), patient days for patients hospitalized in the ICU, and the patient to nurse ratio.^ Method. We conducted a secondary data analysis on patients hospitalized in the Medical Intensive Care Unit (MICU) of the Memorial Hermann- Texas Medical Center in Houston during the months of March 2008- May 2009. The average monthly values for the patient acuity (mortality and illness Diagnostic Related Group (DRG) scores), patient days for patients hospitalized in the ICU and average patient to nurse ratio were calculated during this time period. Active surveillance of Bloodstream Infections (BSIs), Urinary Tract Infections (UTIs) and Ventilator Associated Pneumonias (VAPs) was performed by Infection Control practitioners, who visited the MICU and performed a personal infection record for each patient. Spearman's rank correlation was performed to determine the relationship between these nosocomial infections and the non-traditional risk factors.^ Results. We found weak negative correlations between BSIs and two measures (illness and mortality DRG). We also found a weak negative correlation between UTI and unit staffing (patient to nurse ratio). The strongest positive correlation was found between illness DRG and mortality DRG, validating our methodology.^ Conclusion. From this analysis, we were able to infer that non-traditional risk factors do not appear to play a significant role in transmission of infection in the units we evaluated.^
Resumo:
Non routine hospital settings are those that are infrequently used in hospitals and that often do not come to mind when sanitation and disinfection practices are used. These settings are a major source of nosocomial, or hospital acquired, infections, and are often overlooked. Data on these sources are often scattered and scarce, but these sources are significant such that they warrant equal attention of commonly recognized nosocomial infection sources in order to help reduce incidence of nosocomial infections. ^
Resumo:
Background. Acute diarrhea (AD) is an important cause of morbidity and mortality among both children and adults. An ideal antidiarrheal treatment should be safe, effective, compatible with Oral Rehydration Solution, and inexpensive. Herbal medicines, if effective, should fit these criteria as well or better than standard treatment. ^ Objective. The objective of the present study was to assess the effectiveness of plant preparations in patients with AD in reports of randomized and non-randomized controlled trials. ^ Aims. The aims of the present study were to identify effective antidiarrheal herbs and to identify potential antidiarrheal herbs for future studies of efficacy through well designed clinical trials in human populations. ^ Methods. Nineteen published studies of herbal management of AD were examined to identify effective plant preparations. Ten plant preparations including Berberine (Berberis aristata), tormentil root ( Potentialla tormentilla), baohauhau (from the baobaosan plant), carob (Ceratonia siliqua), pectin (Malus domestica), wood creosote (Creosote bush), guava (Psidium guajava L.), belladonna (Atropa belladonna), white bean (Phaseolis vulgaris), and wheat (Triticum aestivum) were identified. ^ Results. Qualitative data analysis of nineteen clinical trials indicated berberine’s potentially valuable antisecretory effects against diarrhea caused by Vibrio cholerae and enterotoxigenic Escherichia coli. Tormentil root showed significant efficacy against rotavirus-induced diarrhea; carob exhibited antidiarrheal properties not only by acting to detoxify and constipate but by providing a rich source of calories; guava and belladonna are antispasmodics and have been shown to relieve the symptoms of AD. Finally, white bean and wheat yielded favorable clinical and dietary outcomes in children with diarrhea. ^ Conclusion. The present study is the first to review the evidence for use of herbal compounds for treatment of AD. Future randomized controlled trials are needed to evaluate their efficacy and safety.^
Resumo:
Groundwater constitutes approximately 30% of freshwater globally and serves as a source of drinking water in many regions. Groundwater sources are subject to contamination with human pathogens (viruses, bacteria and protozoa) from a variety of sources that can cause diarrhea and contribute to the devastating global burden of this disease. To attempt to describe the extent of this public health concern in developing countries, a systematic review of the evidence for groundwater microbially-contaminated at its source as risk factor for enteric illness under endemic (non-outbreak) conditions in these countries was conducted. Epidemiologic studies published in English language journals between January 2000 and January 2011, and meeting certain other criteria, were selected, resulting in eleven studies reviewed. Data were extracted on microbes detected (and their concentrations if reported) and on associations measured between microbial quality of, or consumption of, groundwater and enteric illness; other relevant findings are also reported. In groundwater samples, several studies found bacterial indicators of fecal contamination (total coliforms, fecal coliforms, fecal streptococci, enterococci and E. coli), all in a wide range of concentrations. Rotavirus and a number of enteropathogenic bacteria and parasites were found in stool samples from study subjects who had consumed groundwater, but no concentrations were reported. Consumption of groundwater was associated with increased risk of diarrhea, with odds ratios ranging from 1.9 to 6.1. However, limitations of the selected studies, especially potential confounding factors, limited the conclusions that could be drawn from them. These results support the contention that microbial contamination of groundwater reservoirs—including with human enteropathogens and from a variety of sources—is a reality in developing countries. While microbially-contaminated groundwaters pose risk for diarrhea, other factors are also important, including water treatment, water storage practices, consumption of other water sources, water quantity and access to it, sanitation and hygiene, housing conditions, and socio-economic status. Further understanding of the interrelationships between, and the relative contributions to disease risk of, the various sources of microbial contamination of groundwater can guide the allocation of resources to interventions with the greatest public health benefit. Several recommendations for future research, and for practitioners and policymakers, are presented.^
Resumo:
The first data on chemical composition of nonreef-building non-zooxanthellate deep-sea corals presented in this publication allow us to identify following tendencies manifested in the biomineralization process. Comparison of concentration levels of some chemical elements in scleractinian corals and ambient ocean waters suggests that corals do not accumulate K in the process of biomineralization and weakly accumulate Mg, whereas Ca, Sr, Si, Al, Ti, Mn, Zn, Cu, Cd, Pb, and Fe are concentrated in skeletons of corals with enrichment coefficients of 10**3 to 10**7. Correlations between components contained in the skeletons of scleractinian corals suggest that the source of Al, Si, Fe, and Ti in them is the clayey constituent of bottom sediments and zooplankton, while trace elements are likely accumulated via bioassimilation from seawater. Such elements as Mn, Sr, Pb, and Cd can structurally substitute Ca in calcite and aragonite. Variations in concentrations of the elements in coral skeletons depending on their habitat depths are fairly significant. As could be expected Ca and Mg concentrations are prone to decrease with depth (R = -0.55 and -0.51, respectively), which can possibly be caused by partial dissolution of carbonate skeletons with increasing depth, whereas the Sr/Ca ratio does not depend on depth.