978 resultados para model library
Resumo:
Standardization is a common method for adjusting confounding factors when comparing two or more exposure category to assess excess risk. Arbitrary choice of standard population in standardization introduces selection bias due to healthy worker effect. Small sample in specific groups also poses problems in estimating relative risk and the statistical significance is problematic. As an alternative, statistical models were proposed to overcome such limitations and find adjusted rates. In this dissertation, a multiplicative model is considered to address the issues related to standardized index namely: Standardized Mortality Ratio (SMR) and Comparative Mortality Factor (CMF). The model provides an alternative to conventional standardized technique. Maximum likelihood estimates of parameters of the model are used to construct an index similar to the SMR for estimating relative risk of exposure groups under comparison. Parametric Bootstrap resampling method is used to evaluate the goodness of fit of the model, behavior of estimated parameters and variability in relative risk on generated sample. The model provides an alternative to both direct and indirect standardization method. ^
Resumo:
Periodontal diseases (PD) are infectious, inflammatory, and tissue destructive events which affect the periodontal ligament that surround and support the teeth. Periodontal diseases are the major cause of tooth loss after age 35, with gingivitis and periodontitis affecting 75% of the adult population. A select group of bacterial organisms are associated with periodontal pathogenesis. There is a direct association between oral hygiene and prevention of PD. The importance of genetic differences and host immune response capabilities in determining host, susceptibility or resistance to PD has not been established. This study examined the risk factors and serum (humoral) immune response to periodontal diseased-associated pathogens in a 55 to 80+ year old South Texas study sample with PD. This study sample was described by: age, sex, ethnicity, the socioeconomic factors marital status, income and occupation, IgG, IgA, IgM immunoglobulin status, and the autoimmune response markers rheumatoid factor (RF) and antinuclear antibody (ANA). These variables were used to determine the risk factors associated with development of PD. Serum IgG, IgA, IgM antibodies to bacterial antigens provided evidence for disease exposure.^ A causal model for PD was constructed from associations for risk factors (ethnicity, marital status, income, and occupation) with dental exam and periodontitis. The multiple correlation between PD and ethnicity, income and dental exam was significant. Hispanics of low income were least likely to have had a dental exam in the last year and most likely to have PD. The etiologic agents for PD, as evidenced by elevated humoral antibody responses, were the Gram negative microorganisms Bacteroides gingivalis, serotypes FDC381 and SUNYaBA7A1-28, and Wolinella recta. Recommendation for a PD prevention and control program are provided. ^
Resumo:
Conventional designs of animal bioassays allocate the same number of animals into control and dose groups to explore the spontaneous and induced tumor incidence rates, respectively. The purpose of such bioassays are (a) to determine whether or not the substance exhibits carcinogenic properties, and (b) if so, to estimate the human response at relatively low doses. In this study, it has been found that the optimal allocation to the experimental groups which, in some sense, minimize the error of the estimated response for low dose extrapolation is associated with the dose level and tumor risk. The number of dose levels has been investigated at the affordable experimental cost. The pattern of the administered dose, 1 MTD, 1/2 MTD, 1/4 MTD,....., etc. plus control, gives the most reasonable arrangement for the low dose extrapolation purpose. The arrangement of five dose groups may make the highest dose trivial. A four-dose design can circumvent this problem and has also one degree of freedom for testing the goodness-of-fit of the response model.^ An example using the data on liver tumors induced in mice in a lifetime study of feeding dieldrin (Walker et al., 1973) is implemented with the methodology. The results are compared with conclusions drawn from other studies. ^
Resumo:
A Bayesian approach to estimation of the regression coefficients of a multinominal logit model with ordinal scale response categories is presented. A Monte Carlo method is used to construct the posterior distribution of the link function. The link function is treated as an arbitrary scalar function. Then the Gauss-Markov theorem is used to determine a function of the link which produces a random vector of coefficients. The posterior distribution of the random vector of coefficients is used to estimate the regression coefficients. The method described is referred to as a Bayesian generalized least square (BGLS) analysis. Two cases involving multinominal logit models are described. Case I involves a cumulative logit model and Case II involves a proportional-odds model. All inferences about the coefficients for both cases are described in terms of the posterior distribution of the regression coefficients. The results from the BGLS method are compared to maximum likelihood estimates of the regression coefficients. The BGLS method avoids the nonlinear problems encountered when estimating the regression coefficients of a generalized linear model. The method is not complex or computationally intensive. The BGLS method offers several advantages over Bayesian approaches. ^
Resumo:
This study examines Hispanic levels of incorporation and access to health care. Applying the Aday and Andersen framework for the study of access, the study examined the relationship between two levels of Hispanic incorporation into U.S. society, i.e., mainstream versus ethnic, and potential and realized measures of access to health care. Data for the study were drawn from a 1992 telephone survey of 600 randomly selected Hispanics in Houston and Harris County.^ The hypotheses tested were: (1) Hispanics who are incorporated into mainstream society are more likely to have better potential and realized access to health care than those who are incorporated into ethnic-group enclaves regardless of their socioeconomic status (SES), health status and health needs, and (2) there is no interaction between the levels of incorporation (mainstream or ethnic) and SES, health status, and health needs in predicting potential and realized access.^ The data analysis supported Hypothesis One for the two measures of potential access. The results of bivariate and multiple logistic regression analyses indicated that for Hispanics in Houston and Harris County, being in the "mainstream" incorporation category increased their potential access to care, having "health insurance" and a "regular place of care". For the selected measure of realized access, having a "regular check-up", the analysis did not demonstrate statistically significant differences in having a regular check-up among Hispanics incorporated in the ethnic or mainstream incorporation categories.^ Hypothesis Two, that there is no interaction between the levels of incorporation and socioeconomic characteristics, health status, and health needs in predicting potential and realized access among Hispanics was supported by the data. The results of the logistic regression analysis showed that, after adjusting for socioeconomic status, health status, and health needs, the association between "level of incorporation" and the two measures of potential access ("health insurance" and having a "usual place of care") was not modified by the control variables nor by their interaction with level of incorporation. That is, the effect of incorporation on Hispanics' health insurance coverage, and having a usual place of care, was homogenous across Hispanics with different SES and health status.^ The main research implication of this dissertation is the employment of a theoretical framework for the assessment of cultural factors essential to research on migrating heterogeneous subpopulations. It also provided strategies to solve practical and methodological difficulties in the secondary analyses of data on these populations. ^
Resumo:
This research examined to what extent Health Belief Model (HBM) and socioeconomic variables were useful in explaining the choice whether or not more effective contraceptive methods were used among married fecund women intending no additional births. The source of the data was the 1976 National Survey of Family Growth conducted under the auspices of the National Center for Health Statistics. Using the HBM as a framework for multivariate analyses limited support was found (using available measures) that the HBM components of motivation and perceived efficacy influence the likelihood of more effective contraceptive method use. Support was also found that modifying variables suggested by the HBM can influence the effects of HBM components on the likelihood of more effective method use. Socioeconomic variables were found, using all cases and some subgroups, to have a significant additional influence on the likelihood of use of more effective methods. Limited support was found for the concept that the greater the opportunity costs of an unwanted birth the greater the likelihood of use of more effective contraceptive methods. This research supports the use of HBM and socioeconomic variables to explain the likelihood of a protective health behavior, use of more effective contraception if no additional births are intended.^
Resumo:
As the requirements for health care hospitalization have become more demanding, so has the discharge planning process become a more important part of the health services system. A thorough understanding of hospital discharge planning can, then, contribute to our understanding of the health services system. This study involved the development of a process model of discharge planning from hospitals. Model building involved the identification of factors used by discharge planners to develop aftercare plans, and the specification of the roles of these factors in the development of the discharge plan. The factors in the model were concatenated in 16 discrete decision sequences, each of which produced an aftercare plan.^ The sample for this study comprised 407 inpatients admitted to the M. D. Anderson Hospital and Tumor Institution at Houston, Texas, who were discharged to any site within Texas during a 15 day period. Allogeneic bone marrow donors were excluded from the sample. The factors considered in the development of discharge plans were recorded by discharge planners and were used to develop the model. Data analysis consisted of sorting the discharge plans using the plan development factors until for some combination and sequence of factors all patients were discharged to a single site. The arrangement of factors that led to that aftercare plan became a decision sequence in the model.^ The model constructs the same discharge plans as those developed by hospital staff for every patient in the study. Tests of the validity of the model should be extended to other patients at the MDAH, to other cancer hospitals, and to other inpatient services. Revisions of the model based on these tests should be of value in the management of discharge planning services and in the design and development of comprehensive community health services.^
Resumo:
The potential for significant human populations to experience long-term inhalation of formaldehyde and reports of symptomatology due to this exposure has led to a considerable interest in the toxicologic assessment of risk from subchronic formaldehyde exposures using animal models. Since formaldehyde inhalation depresses certain respiratory parameters in addition to its other forms of toxicity, there is a potential for the alteration of the actual dose received by the exposed individual (and the resulting toxicity) due to this respiratory effect. The respiratory responses to formaldehyde inhalation and the subsequent pattern of deposition were therefore investigated in animals that had received subchronic exposure to the compound, and the potential for changes in the formaldehyde dose received due to long-term inhalation evaluated. Male Sprague-Dawley rats were exposed to either 0, 0.5, 3, or 15 ppm formaldehyde for 6 hours/day, 5 days/week for up to 6 months. The patterns of respiratory response, deposition and the compensation mechanisms involved were then determined in a series of formaldehyde test challenges to both the upper and to the lower respiratory tracts in separate groups of subchronically exposed animals and age-specific controls (four concentration groups, two time points). In both the control and pre-exposed animals, there was a characteristic recovery of respiratory parameters initially depressed by formaldehyde inhalation to at or approaching pre-exposure levels within 10 minutes of the initiation of exposure. Also, formaldehyde deposition was found to remain very high in the upper and lower tracts after long-term exposure. Therefore, there was probably little subsequent effect on the dose received by the exposed individual that was attributable to the repeated exposures. There was a diminished initial minute volume response in test challenges of both the upper and lower tracts of animals that had received at least 16 weeks of exposure to 15 ppm, with compensatory increases in tidal volume in the upper tract and respiratory rate in the lower tract. However, this dose-related effect was probably not relevant to human risk estimation because this formaldehyde dose is in excess of that experienced by human populations. ^
Resumo:
Breast cancer is the most common non-skin cancer and the second leading cause of cancer-related death in women in the United States. Studies on ipsilateral breast tumor relapse (IBTR) status and disease-specific survival will help guide clinic treatment and predict patient prognosis.^ After breast conservation therapy, patients with breast cancer may experience breast tumor relapse. This relapse is classified into two distinct types: true local recurrence (TR) and new ipsilateral primary tumor (NP). However, the methods used to classify the relapse types are imperfect and are prone to misclassification. In addition, some observed survival data (e.g., time to relapse and time from relapse to death)are strongly correlated with relapse types. The first part of this dissertation presents a Bayesian approach to (1) modeling the potentially misclassified relapse status and the correlated survival information, (2) estimating the sensitivity and specificity of the diagnostic methods, and (3) quantify the covariate effects on event probabilities. A shared frailty was used to account for the within-subject correlation between survival times. The inference was conducted using a Bayesian framework via Markov Chain Monte Carlo simulation implemented in softwareWinBUGS. Simulation was used to validate the Bayesian method and assess its frequentist properties. The new model has two important innovations: (1) it utilizes the additional survival times correlated with the relapse status to improve the parameter estimation, and (2) it provides tools to address the correlation between the two diagnostic methods conditional to the true relapse types.^ Prediction of patients at highest risk for IBTR after local excision of ductal carcinoma in situ (DCIS) remains a clinical concern. The goals of the second part of this dissertation were to evaluate a published nomogram from Memorial Sloan-Kettering Cancer Center, to determine the risk of IBTR in patients with DCIS treated with local excision, and to determine whether there is a subset of patients at low risk of IBTR. Patients who had undergone local excision from 1990 through 2007 at MD Anderson Cancer Center with a final diagnosis of DCIS (n=794) were included in this part. Clinicopathologic factors and the performance of the Memorial Sloan-Kettering Cancer Center nomogram for prediction of IBTR were assessed for 734 patients with complete data. Nomogram for prediction of 5- and 10-year IBTR probabilities were found to demonstrate imperfect calibration and discrimination, with an area under the receiver operating characteristic curve of .63 and a concordance index of .63. In conclusion, predictive models for IBTR in DCIS patients treated with local excision are imperfect. Our current ability to accurately predict recurrence based on clinical parameters is limited.^ The American Joint Committee on Cancer (AJCC) staging of breast cancer is widely used to determine prognosis, yet survival within each AJCC stage shows wide variation and remains unpredictable. For the third part of this dissertation, biologic markers were hypothesized to be responsible for some of this variation, and the addition of biologic markers to current AJCC staging were examined for possibly provide improved prognostication. The initial cohort included patients treated with surgery as first intervention at MDACC from 1997 to 2006. Cox proportional hazards models were used to create prognostic scoring systems. AJCC pathologic staging parameters and biologic tumor markers were investigated to devise the scoring systems. Surveillance Epidemiology and End Results (SEER) data was used as the external cohort to validate the scoring systems. Binary indicators for pathologic stage (PS), estrogen receptor status (E), and tumor grade (G) were summed to create PS+EG scoring systems devised to predict 5-year patient outcomes. These scoring systems facilitated separation of the study population into more refined subgroups than the current AJCC staging system. The ability of the PS+EG score to stratify outcomes was confirmed in both internal and external validation cohorts. The current study proposes and validates a new staging system by incorporating tumor grade and ER status into current AJCC staging. We recommend that biologic markers be incorporating into revised versions of the AJCC staging system for patients receiving surgery as the first intervention.^ Chapter 1 focuses on developing a Bayesian method to solve misclassified relapse status and application to breast cancer data. Chapter 2 focuses on evaluation of a breast cancer nomogram for predicting risk of IBTR in patients with DCIS after local excision gives the statement of the problem in the clinical research. Chapter 3 focuses on validation of a novel staging system for disease-specific survival in patients with breast cancer treated with surgery as the first intervention. ^
Resumo:
In regression analysis, covariate measurement error occurs in many applications. The error-prone covariates are often referred to as latent variables. In this proposed study, we extended the study of Chan et al. (2008) on recovering latent slope in a simple regression model to that in a multiple regression model. We presented an approach that applied the Monte Carlo method in the Bayesian framework to the parametric regression model with the measurement error in an explanatory variable. The proposed estimator applied the conditional expectation of latent slope given the observed outcome and surrogate variables in the multiple regression models. A simulation study was presented showing that the method produces estimator that is efficient in the multiple regression model, especially when the measurement error variance of surrogate variable is large.^
Resumo:
Community health workers (CHWs) can serve as a bridge between healthcare providers and communities to positively impact social determinants of health and, thus, the overall health of the population. The potential to effect lasting change is particularly significant within resource-poor settings with limited access to formally trained health care providers such as the small, rural village of Santa Ana Intibucá, Honduras and surrounding areas—located on the geographically and politically isolated border of Honduras and El Salvador. The Baylor Shoulder to Shoulder Foundation (BSTS) works in conjunction with Santa Ana's volunteer health committee to bring a health brigade that has provided health care and public health projects to the area at least twice a year since 2001. They have also hired a full-time Honduran physician, a Honduran in-country administrative director, and built a clinic; yet, no community health worker program exists. This CHW program model is the response to a clear need for a CHW program within the area served by BSTS and presents a CHW program model specific to Santa Ana Intibucá and surrounding areas to be implemented by BSTS. Methods used to develop this model include reviewing the literature for recommendations from leading authorities as well as successfully implemented CHW programs in comparable regions. This information was incorporated into existing knowledge and materials currently being used in the area. Using the CHW model proposed here, each brigade, in conjunction with the communities served, can help develop new modules to respond to the specific health priorities of the region at that time, incorporating consistent modes of contact with the local physician and the CHWs to provide refresher courses, training in new topics of interest, and to be reminded of the importance of community health workers' role as the critical link to healthy societies. With cooperation, effort, and support, the brigade can continue to help integrate a sustainable CHW system in which communities may be able to maximize the care they receive while also learning to care for their own health and the future of their communities.^
Resumo:
ACCURACY OF THE BRCAPRO RISK ASSESSMENT MODEL IN MALES PRESENTING TO MD ANDERSON FOR BRCA TESTING Publication No. _______ Carolyn A. Garby, B.S. Supervisory Professor: Banu Arun, M.D. Hereditary Breast and Ovarian Cancer (HBOC) syndrome is due to mutations in BRCA1 and BRCA2 genes. Women with HBOC have high risks to develop breast and ovarian cancers. Males with HBOC are commonly overlooked because male breast cancer is rare and other male cancer risks such as prostate and pancreatic cancers are relatively low. BRCA genetic testing is indicated for men as it is currently estimated that 4-40% of male breast cancers result from a BRCA1 or BRCA2 mutation (Ottini, 2010) and management recommendations can be made based on genetic test results. Risk assessment models are available to provide the individualized likelihood to have a BRCA mutation. Only one study has been conducted to date to evaluate the accuracy of BRCAPro in males and was based on a cohort of Italian males and utilized an older version of BRCAPro. The objective of this study is to determine if BRCAPro5.1 is a valid risk assessment model for males who present to MD Anderson Cancer Center for BRCA genetic testing. BRCAPro has been previously validated for determining the probability of carrying a BRCA mutation, however has not been further examined particularly in males. The total cohort consisted of 152 males who had undergone BRCA genetic testing. The cohort was stratified by indication for genetic counseling. Indications included having a known familial BRCA mutation, having a personal diagnosis of a BRCA-related cancer, or having a family history suggestive of HBOC. Overall there were 22 (14.47%) BRCA1+ males and 25 (16.45%) BRCA2+ males. Receiver operating characteristic curves were constructed for the cohort overall, for each particular indication, as well as for each cancer subtype. Our findings revealed that the BRCAPro5.1 model had perfect discriminating ability at a threshold of 56.2 for males with breast cancer, however only 2 (4.35%) of 46 were found to have BRCA2 mutations. These results are significantly lower than the high approximation (40%) reported in previous literature. BRCAPro does perform well in certain situations for men. Future investigation of male breast cancer and men at risk for BRCA mutations is necessary to provide a more accurate risk assessment.