912 resultados para mixed ionic-electronic conducting oxides
Resumo:
Single-phase Ba(Cd1/3Ta2/3)O-3 powder was produced using conventional solid state reaction methods. Ba(Cd1/3Ta2/3)O-3 ceramics with 2 wt % ZnO as sintering additive sintered at 1550 degreesC exhibited a dielectric constant of similar to32 and loss tangent of 5x10(-5) at 2 GHz. X-ray diffraction and thermogravimetric measurements were used to characterize the structural and thermodynamic properties of the material. Ab initio electronic structure calculations were used to give insight into the unusual properties of Ba(Cd1/3Ta2/3)O-3, as well as a similar and more widely used material Ba(Zn1/3Ta2/3)O-3. While both compounds have a hexagonal Bravais lattice, the P321 space group of Ba(Cd1/3Ta2/3)O-3 is reduced from P (3) under bar m1 of Ba(Zn1/3Ta2/3)O-3 as a result of a distortion of oxygen away from the symmetric position between the Ta and Cd ions. Both of the compounds have a conduction band minimum and valence band maximum composed of mostly weakly itinerant Ta 5d and Zn 3d/Cd 4d levels, respectively. The covalent nature of the directional d-electron bonding in these high-Z oxides plays an important role in producing a more rigid lattice with higher melting points and enhanced phonon energies, and is suggested to play an important role in producing materials with a high dielectric constant and low microwave loss. (C) 2005 American Institute of Physics.
Resumo:
Genotype, sulphur (S) nutrition and soil-type effects on spring onion quality were assessed using a 32-conducting polymer sensor E-nose. Relative changes in sensor resistance ratio (% dR/R) varied among eight spring onion genotypes. The % dR/R was reduced by S application in four of the eight genotypes. For the other four genotypes, S application gave no change in % dR/R in three, and increased % dR/R in the other. E-nose classification of headspace volatiles by a two-dimensional principal component analysis (PCA) plot for spring onion genotypes differed for S fertilisation vs. no S fertilisation. Headspace volatiles data set clusters for cv. 'White Lisbon' grown on clay or on sandy loam overlapped when 2.9 [Mahalanobis distance value (D2) = 1.6], or 5.8-(D2 = 0.3) kg S ha-1 was added. In contrast, clear separation (D2 = 7.5) was recorded for headspace volatile clusters for 0 kg S hd-1 on clay vs. sandy loam. Addition of 5.8 kg S ha-1 increased pyruvic acid content (mmole g-1 fresh weight) by 1.7-fold on average across the eight genotypes. However, increased S from 2.9 to 5.8 kg ha-1 did not significantly (P > 0.05) influence % dR/R, % dry matter (DM) or total soluble solids (TSS) contents, but significantly (P < 0.05) increased pyruvic acid content. TSS was significantly (P < 0.05) reduced by S addition, while % DM was unaffected. In conclusion, the 32-conducting polymer E-nose discerned differences in spring onion quality that were attributable to genotype and to variations in growing conditions as shown by the significant (P < 0.05) interaction effects for % dR/R.
Resumo:
We present a group theoretical analysis of several classes of organic superconductor. We predict that highly frustrated organic superconductors, such as K-(ET)(2)Cu-2(CN)(3) (where ET is BEDT-TTF, bis(ethylenedithio) tetrathiafulvalene) and beta'-[Pd(dmit)(2)](2)X, undergo two superconducting phase transitions, the first from the normal state to a d-wave superconductor and the second to a d + id state. We show that the monoclinic distortion of K-(ET)(2)Cu(NCS)(2) means that the symmetry of its superconducting order parameter is different from that of orthorhombic-K-(ET)(2)Cu[N(CN)(2)] Br. We propose that beta'' and theta phase organic superconductors have d(xy) + s order parameters.
Resumo:
A new method is reported for the synthesis of alkyl aryl sulfones by alkylation of sodium arenesulfinates with unactivated alkyl chlorides using ionic liquid based on 1-butyl-3-methylimidazolium tetrafluoroborate (BmimBF 4) mixed with water (2:1) as reaction media. The ionic liquid can be reused and the procedure gives the sulfones in moderate yields.
Resumo:
A study of clay chemistry has been approached with three aims: - to modify the conducting properties by intercalation of tetrathiafulvalene, - to study the electrochemistry of redox-active coordination compounds immobilised on clay coated electrodes, and - to study the role of clays as reagents in inorganic glass forming reactions using mainly solid-state magic-angle-spinning NMR. TTF was intercalated by smectites containing different interlayer and lattice cations. Evidence from ESR and 57Fe Mossbauer indicated charge-transfer from TTF to structural iron in natural montmorillonite, and to interlayer Cu2+ in Cu2+ exchanged laponite. No charge transfer was observed for laponite (Na+ form) itself. Ion exchange of TTF3(BF4)2 with laponite was found to proceed quantitatively. The intercalated species were believed to be (TTF)2+ dimers. Conductivity data showed an order of magnitude increase for the intercalated clays. The mechanism is thought to be ionic rather than CT as Na+ laponite showed a similar enhancement in conductivity. Mechanically robust colloidal clay films were prepared on platinum electrodes. After immersion in solutions containing redox active complexes [Co(bpy)3]3+ and [Cr(bpy)3]3+, the films became electroactive when a potential was applied. Cyclic voltammograms obtained for both complexes were found to be of the diffusion controlled type. For [Co(bpy)3]3+ immobilised on clay coated electrodes, a one-step oxidation and four-step reduction wave was observed corresponding to a one electron stepwise reversible reduction of Co(III), through Co(II), Co(I), Co(O) to Co(I) oxidation state. For [Cr(bpy)3]3+ the electrochemistry was complicated by the presence of additional waves corresponding to the dissociation of [Cr(bpy)3]3+ into the diaquo complex. ESR and diffuse reflectance data supported such a mechanism. 29Si, 27Al and 23Na MAS NMR spectroscopy, supported by powder XRD and FTIR, was used to probe the role of clays as reagents in glass forming reactions. 29Si MAS NMR was found to be a very sensitive technique for identifying the presence and relative abundance of crystalline and non-crystalline phases. In thermal reactions of laponite formation of new mineral phases such as forsterite, akermanite, sillimanite and diopside were detected. The relative abundance of each phase was dependent on thermal history, chemical nature and concentration of the modifier oxide present. In continuing work, the effect of selected oxides on the glass forming reactions of a model feldspar composition was investigated using solid state NMR alone. Addition of network modifying oxides generally produced less negative 29Si chemical shifts and larger linewidths corresponding to a wider distribution of Si-O-Si bond angles and lengths, and a dominant aluminosilicate phase with a less polymerised structure than the starting material. 29Si linewidths and 27Al chemical shifts were respectively correlated with cationic potential and Lewis acidity of the oxide cations. Anomalous Al(4) chemical shifts were thought to be due to precipitation of aluminate phases rather than a breakdown in Lowenstein's aluminium avoidance principle.
Resumo:
Electronic channel affiliates are important online intermediaries between customers and host retailers. However, no work has studied how online retailers control online intermediaries. By conducting an exploratory content analysis of 85 online contracts between online retailers and their online intermediaries, and categorizing the governing mechanisms used, insights into the unique aspects of the control of online intermediaries are presented. Findings regarding incentives, monitoring, and enforcement are presented. Additionally, testable research propositions are presented to guide further theory development, drawing on contract theory, resource dependence theory and agency theory. Managerial implications are discussed. © 2012 Elsevier Inc.
Resumo:
A simple and efficient route to prepare supported nanocrystalline oxides is presented. The synthesis procedure, i.e. in situ autocombustion of a glycine complex, allows the production of nanocrystals in a porous matrix presenting larger pore size. An example of successful formation of 2-5 nm nanocrystals is given for a single oxide (Fe2O3), a mixed-oxide structure (LaCoO3 perovskite-type) and a nickel-doped oxide. © 2011 The Royal Society of Chemistry.
Resumo:
The multifunctional properties of carbon nanotubes (CNTs) make them a powerful platform for unprecedented innovations in a variety of practical applications. As a result of the surging growth of nanotechnology, nanotubes present a potential problem as an environmental pollutant, and as such, an efficient method for their rapid detection must be established. Here, we propose a novel type of ionic sensor complex for detecting CNTs – an organic dye that responds sensitively and selectively to CNTs with a photoluminescent signal. The complexes are formed through Coulomb attractions between dye molecules with uncompensated charges and CNTs covered with an ionic surfactant in water. We demonstrate that the photoluminescent excitation of the dye can be transferred to the nanotubes, resulting in selective and strong amplification (up to a factor of 6) of the light emission from the excitonic levels of CNTs in the near-infrared spectral range, as experimentally observed via excitation-emission photoluminescence (PL) mapping. The chirality of the nanotubes and the type of ionic surfactant used to disperse the nanotubes both strongly affect the amplification; thus, the complexation provides sensing selectivity towards specific CNTs. Additionally, neither similar uncharged dyes nor CNTs covered with neutral surfactant form such complexes. As model organic molecules, we use a family of polymethine dyes with an easily tailorable molecular structure and, consequently, tunable absorbance and PL characteristics. This provides us with a versatile tool for the controllable photonic and electronic engineering of an efficient probe for CNT detection.
Resumo:
Introduction: There is increasing evidence that electronic prescribing (ePrescribing) or computerised provider/physician order entry (CPOE) systems can improve the quality and safety of healthcare services. However, it has also become clear that their implementation is not straightforward and may create unintended or undesired consequences once in use. In this context, qualitative approaches have been particularly useful and their interpretative synthesis could make an important and timely contribution to the field. This review will aim to identify, appraise and synthesise qualitative studies on ePrescribing/CPOE in hospital settings, with or without clinical decision support. Methods and analysis: Data sources will include the following bibliographic databases: MEDLINE, MEDLINE In Process, EMBASE, PsycINFO, Social Policy and Practice via Ovid, CINAHL via EBSCO, The Cochrane Library (CDSR, DARE and CENTRAL databases), Nursing and Allied Health Sources, Applied Social Sciences Index and Abstracts via ProQuest and SCOPUS. In addition, other sources will be searched for ongoing studies (ClinicalTrials.gov) and grey literature: Healthcare Management Information Consortium, Conference Proceedings Citation Index (Web of Science) and Sociological abstracts. Studies will be independently screened for eligibility by 2 reviewers. Qualitative studies, either standalone or in the context of mixed-methods designs, reporting the perspectives of any actors involved in the implementation, management and use of ePrescribing/CPOE systems in hospital-based care settings will be included. Data extraction will be conducted by 2 reviewers using a piloted form. Quality appraisal will be based on criteria from the Critical Appraisal Skills Programme checklist and Standards for Reporting Qualitative Research. Studies will not be excluded based on quality assessment. A postsynthesis sensitivity analysis will be undertaken. Data analysis will follow the thematic synthesis method. Ethics and dissemination: The study does not require ethical approval as primary data will not be collected. The results of the study will be published in a peer-reviewed journal and presented at relevant conferences.
Study of the physical properties of metals and oxides at extreme pressure and temperature conditions
Resumo:
The high-pressure and temperature investigations on transition metals, metal doped-oxide system, nanocrystalline materials are presented in this dissertation. The metal-doped oxide systems are technologically important because of their applications, e.g. LSC, opto electronic applications, luminescence from lasers, etc., and from the earth sciences point of view, e.g. the study of trace elements in the MgO-SiO2 system, which accounts for 50% of the Earth's chondritic model. We have carried out thorough investigations on Cr2O3 and on chromium bearing oxides at high PT-conditions using in situ X-ray diffractometry and florescence spectroscopy techniques. Having obtained exciting results, an attempt to focus on the mechanism of the coordination of transition metals in oxides has been made. Additionally, the florescence from the metals in host oxides was found to be helpful to obtain information on structural variations like changes in the coordination of the doped element, formation of new phases, the diffusion processes. The possible reactions taking place at extreme conditions in the MgO-SiO2 system has been observed using florescence as markers. A new heating assemblage has been designed and fabricated for a precise determination of temperature at high pressures. An equation combining pressure shifts of ruby wavelength and temperature has been proposed. We observed that the compressibility of nanocrystalline material (MgO and Ni) is independent of crystallite size. A reduction in the transition pressure of nanocrystalline ceria at high-pressure has been observed as compare to the corresponding bulk material. ^
Resumo:
The discovery of High-Temperature Superconductors (HTSCs) has spurred the need for the fabrication of superconducting electronic devices able to match the performance of today's semiconductor devices. While there are several HTSCs in use today, YBaCuO7-x (YBCO) is the better characterized and more widely used material for small electronic applications. This thesis explores the fabrication of a Two-Terminal device with a superconductor and a painted on electrode as the terminals and a ferroelectric, BaTiO 3 (BTO), in between. The methods used to construct such a device and the challenges faced with the fabrication of a viable device will be examined. The ferroelectric layer of the devices that proved adequate for use were poled by the application of an electric field. Temperature Bias Poling used an applied field of 105V/cm at a temperature of approximately 135*C. High Potential Poling used an applied field of 106V/cm at room temperature (20*C). The devices were then tested for a change in their superconducting critical temperature, Tc. A shift of 1-2K in the Tc(onset) of YBCO was observed for Temperature Bias Poling and a shift of 2-6K for High Potential Poling. These are the first reported results of the field effect using BTO on YBCO. The mechanism involved in the shifting of Tc will be discussed along with possible applications.
Resumo:
The PSFC (Pr0.5Sr0.5Fe1-xCuxO3-δ) is a new mixed oxide perovskite and has been studied and evaluated the cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs), mainly due to its good compatibility with the electrolyte (CGO) and its high ionic conductivity and electronic in intermediate temperature. In this work, PSFC powders with two different compositions (Pr0,5Sr0,5Fe0,8Cu0,2O3- PSFC5582 and Pr0,5Sr0,5Fe0,6Cu0,4O3-PSFC5564) were synthesized by the citrate method using a new route. The powders obtained were characterized by thermal analysis (Differential Scanning Calorimetry and Thermogravimetry), and the material calcined at 800, 900 and 1000 °C for 5h were analyzed by X-ray diffractometry (XRD), with the Rietveld refinement of the diffraction data and dilatometry. PSFC5582 composite films were obtained by screen printing of powder calcined at 1000 °C. The films were deposited on substrate ceria doped with gadolinia (CGO) and then sintered at 1050 °C for 2h. The electrochemical performance of the electrodes was evaluated by impedance spectroscopy and the interface electrode/electrolyte was observed by scanning electron microscopy (SEM). The specific resistance area (ASR) was 0.44 Ω.cm² at 800 °C, slightly lower than those reported in the literature for cathodes containing cobalt. The thermal expansion coefficients of both the PSFC compositions were obtained and varied between 13 and 15 x 10-6 °C-1 , in a temperature range of 200 to 650 °C, demonstrating the good thermal compatibility of cathodes with Ce0,9Gd0,1O1,95 electrolytes (CET = 12 x 10-6 °C).
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
In this paper, we use density functional theory corrected for on-site Coulomb interactions (DFT + U) and hybrid DFT (HSE06 functional) to study the defects formed when the ceria (110) surface is doped with a series of trivalent dopants, namely, Al3+, Sc3+, Y3+, and In 3+. Using the hybrid DFT HSE06 exchange-correlation functional as a benchmark, we show that doping the (110) surface with a single trivalent ion leads to formation of a localized MCe / + O O • (M = the 3+ dopant), O- hole state, confirming the description found with DFT + U. We use DFT + U to investigate the energetics of dopant compensation through formation of the 2MCe ′ +VO ̈ defect, that is, compensation of two dopants with an oxygen vacancy. In conjunction with earlier work on La-doped CeO2, we find that the stability of the compensating anion vacancy depends on the dopant ionic radius. For Al3+, which has the smallest ionic radius, and Sc3+ and In3+, with intermediate ionic radii, formation of a compensating oxygen vacancy is stable. On the other hand, the Y3+ dopant, with an ionic radius close to that of Ce4+, shows a positive anion vacancy formation energy, as does La3+, which is larger than Ce4+ (J. Phys.: Condens. Matter 2010, 20, 135004). When considering the resulting electronic structure, in Al3+ doping, oxygen hole compensation is found. However, Sc 3+, In3+, and Y3+ show the formation of a reduced Ce3+ cation and an uncompensated oxygen hole, similar to La3+. These results suggest that the ionic radius of trivalent dopants strongly influences the final defect formed when doping ceria with 3+ cations. In light of these findings, experimental investigations of these systems will be welcome.