972 resultados para melatonin 1 receptor
Resumo:
Cultured human melanocytes differ tremendously in visual pigmentation, and recapitulate the pigmentary phenotype of the donor's skin. This diversity arises from variation in type as well as quantity of melanin produced. Here, we measured contents of eumelanin (EM) and pheomelanin (PM) in 60 primary human melanocyte cultures (51 neonatal and nine adults), and correlated some of these values with the respective activity and protein levels of tyrosinase, and the melanocortin-1 receptor (MC1R) genotype. Melanocytes were classified into four phenotypes (L, L+, D, D+) as depicted by visual pigmentation using light microscopy, and by the pigmentary phenotype of the donor's skin. There were large differences in total melanin (TM) and EM, which increased progressively for L, L+, D and D+ melanocytes. TM content, the sum of EM and PM, showed a good correlation with TM measured spectrophotometrically, and with the activity and protein levels of tyrosinase. Log EM/PM ratio did not correlate with MC1R genotype. We conclude that: (i) EM consistently correlates with the visual phenotype; (ii) lighter melanocytes tend to be more pheomelanic in composition than darker melanocytes; (iii) in adult melanocyte cultures, EM correlates with the ethnic background of the donors (African-American > Indian > Caucasian); and (iv) MC1R loss-of-function mutations do not necessarily alter the phenotype of cultured melanocytes.
Resumo:
To address the issue of melanocortin-1 receptor (MC1R) expression in non-melanocytic cells, we have quantitatively evaluated the relative expression levels of both MC1R mRNA and protein in a subset of different cell types. Using semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) at high cycle numbers, we detected MC1R mRNA in all cell types examined, including human embryonic kidney-293 (HEK 293) cells, a cell type widely used as a negative control in melanocortin expression studies. Quantitative real-time PCR revealed the highest levels of MC1R transcripts were in melanocytic cells, whereas the keratinocyte and fibroblast cell cultures examined had only a low level of expression, similar to that of HEK 293 cells. Antibody mediated detection of MC1R protein in membrane extracts demonstrated exogenous receptor in MC1R transfected cell lines, as well as endogenous MC1R in melanoma cells. However, radioligand binding procedures were required to detect MC1R protein of normal human melanocytes and no surface expression of MC1R was detected in any of the non-melanocytic cells examined. This was consistent with their low level of mRNA, and suggests that, if present, the levels of surface receptor are significantly lower than that in melanocytes. The capacity of such limited levels of MC1R protein to influence non-melanocytic skin cell biology would likely be severely compromised. Indeed, the MC1R agonist [NIe(4), D-Phe(7)] alpha-melanocyte stimulating hormone (NDP-MSH) was unable to elevate intracellular cyclic adenosine monophosphate (cAMP) levels in the keratinocyte and fibroblast cells examined, whereas a robust increase was elicited in melanocytes. Although there are a variety of cell types with detectable MC1R mRNA, the expression of physiologically significant levels of the receptor may be more restricted than the current literature indicates, and within epidermal tissue may be limited to the melanocyte
Resumo:
Background: We have previously shown that the offspring of vitamin D3 depleted rats have enlarged ventricles and altered neurotrophin profiles (reduced NGF and GDNF). These findings enhance the biological plausibility that low prenatal vitamin D may be a risk factor for schizophrenia. Our recent behavioural studies have found that adult rats with developmental vitamin D deficiency (DVD) have a subtle increase in baseline locomotor activity and a heightened response to dopamine (DA) antagonists. The aim of this study was to investigate brain DA neurochemistry in the DVD model. Methods: We examined cerebrums and striatal tissue from neonates and a variety of brain tissues from the remaining littermates at adulthood. DA, DOPAC, HVA, serotonin and 5HIAA were analysed by HPLC. Single point comparisons for DA1, DA2 and NMDA receptors were also assessed in these tissues. Results: Significant increases in DA and HVA were found in brains from DVD deplete neonates (P=0.01). However, DA and its metabolites were not increased in either the neonate or adult striatum, however there was a trend towards increased DA and its metabolites in the accumbens (P=0.1). Receptor densities were unaffected by prenatal vitamin D levels. Conclusions: Although the effect of maternal diet appears to increase DA production and turnover in neonatal brain, this does not persist into adulthood. Thus other factors must underlie the increased locomotor activity noted in these animals. Future experiments will concentrate on monitoring accumbens and striatal DA release and turnover using microdialysis in pharmacologically challenged behavioural paradigms. References: Eyles D, Brown J; Mackay-Sim A, McGrath J, Feron F. (2003) Vitamin D3 and brain development. Neuroscience 118 (3) 641–653. Burne T, McGrath J, Eyles D, Mackay-Sim A. Behavioural characterization of vitamin D receptor knockout mice. (2005) Behavioural Brain Res: 157 299–308.
Resumo:
The mononuclear phagocyte system (MPS) has been defined as a family of cells comprising bone marrow progenitors, blood monocytes and tissue macrophages. Macrophages are a major cell population in most of the tissues in the body, and their numbers increase further in inflammation, wounding and malignancy. Their trophic roles for other cell types in development and homeostasis are becoming increasingly evident. The receptor for macrophage colony-stimulating factor (CSF-1R) is expressed in a large proportion of cells considered to be mononuclear phagocytes, including antigen-presenting dendritic cells, which can be considered a specialized adaptive state rather than a separate lineage. The unity of the MPS is challenged by evidence that there is a separate embryonic phagocyte lineage, by the transdifferentiation and fusion of MPS cells with other cell types, and by evidence of local renewal of tissue macrophage populations as opposed to monocyte recruitment. The concept of the MPS may have partly outlived its usefulness.
Resumo:
We compared changes in markers of muscle damage and systemic inflammation after submaximal and maximal lengthening muscle contractions of the elbow flexors. Using a cross-over design, 10 healthy young men not involved in resistance training completed a submaximal trial (10 sets of 60 lengthening contractions at 10% maximum isometric strength, 1 min rest between sets), followed by a maximal trial (10 sets of three lengthening contractions at 100% maximum isometric strength, 3 min rest between sets). Lengthening contractions were performed on an isokinetic dynamometer. Opposite arms were used for the submaximal and maximal trials, and the trials were separated by a minimum of two weeks. Blood was sampled before, immediately after, 1 h, 3 h, and 1-4 d after each trial. Total leukocyte and neutrophil numbers, and the serum concentration of soluble tumor necrosis factor-alpha receptor 1 were elevated after both trials (P < 0.01), but there were no differences between the trials. Serum IL-6 concentration was elevated 3 h after the submaximal contractions (P < 0.01). The concentrations of serum tumor necrosis factor-alpha, IL-1 receptor antagonist, IL-10, granulocyte-colony stimulating factor and plasma C-reactive protein remained unchanged following both trials. Maximum isometric strength and range of motion decreased significantly (P < 0.001) after both trials, and were lower from 1-4 days after the maximal contractions compared to the submaximal contractions. Plasma myoglobin concentration and creatine kinase activity, muscle soreness and upper arm circumference all increased after both trials (P < 0.01), but were not significantly different between the trials. Therefore, there were no differences in markers of systemic inflammation, despite evidence of greater muscle damage following maximal versus submaximal lengthening contractions of the elbow flexors.
Resumo:
Historically, CGRP receptors have been classified as CGRP(1) or CGRP(2) subtypes, chiefly depending on their affinity for the antagonist CGRP(8-37). It has been shown that the complex between calcitonin receptor-like receptor (CRLR or CL) and receptor activity modifying protein (RAMP) 1 provides a molecular correlate for the CGRP(1) receptor; however this does not explain the range of affinities seen for CGRP(8-37) in isolated tissues. It is suggested that these may largely be explained by a combination of methodological factors and CGRP-responsive receptors generated by CL and RAMP2 or RAMP3 and complexes of RAMPs with the calcitonin receptor.
Resumo:
RAMPs (receptor activity-modifying proteins) are single-pass transmembrane proteins that associate with certain family-B GPCRs (G-protein-coupled receptors). Specifically for the CT (calcitonin) receptor-like receptor and the CT receptor, this results in profound changes in ligand binding and receptor pharmacology, allowing the generation of six distinct receptors with preferences for CGRP (CT gene-related peptide) adrenomedullin, amylin and CT. There are three RAMPs: RAMP1-RAMP3. The N-terminus appears to be the main determinant of receptor pharmacology whereas the transmembrane domain contributes to association of the RAMP with the GPCR. The N-terminus of all members of the RAMP family probably contains two disulphide bonds; a potential third disulphide is found in RAMP1 and RAMP3. The N-terminus appears to be in close proximity to the ligand and plays a key role in its binding, either directly or indirectly. BIBN4096BS, a CGRP antagonist, targets RAMP1 and this gives the compound very high selectivity for the human CGRP(1) receptor.
Resumo:
A neuronal cell line (NG115-401L-C3) was stimulated by mitogenic (angiotensin) and non-mitogenic (bradykinin) peptides and examined for the time course of changes in the levels of radiolabelled inositol phosphates and phospholipids. Both peptides stimulated the time-dependent production of Ins(1,4,5)P3 and related metabolites. Bradykinin caused a much larger increase in Ins(1,4,5)P3 than did angiotensin. However, both peptides stimulated similar rises in the levels of Ins(1,3,4)P3 and InsP4. Bradykinin but not angiotensin, caused a rapid (within 2 s) fall in the levels of PtdIns(4,5)P2 and PtdIns(4)P. Serum pretreatment of the cells caused a 2-3-fold potentiation of both the responses to bradykinin and angiotensin. Although significant levels of PtdIns(3)P were detected in resting cells neither mitogenic (angiotensin, insulin-like growth factor I, transforming growth factor beta) nor non-mitogenic (bradykinin, nerve growth factor interleukin-1) receptor activation changed its levels, arguing against regulation of either PtdIns 3-kinase or PtdIns(3)P phosphatase. We conclude that, as judged by the levels of its product. PtdIns(3)P, the enzyme PtdIns 3-kinase is not activated. This questions the significance of this activity in the receptor-mediated initiation of DNA synthesis.
Resumo:
The multivariable and progressive natural history of type 2 diabetes limits the effectiveness of available glucose-lowering drugs. Constraints imposed by comorbidities (notably cardiovascular disease and renal impairment) and the need to avoid hypoglycaemia, weight gain, and drug interactions further complicate the treatment process. These challenges have prompted the development of new formulations and delivery methods for existing drugs alongside research into novel pharmacological entities. Advances in incretin-based therapies include a miniature implantable osmotic pump to give continuous delivery of a glucagon-like peptide-1 receptor agonist for 6-12 months and once-weekly tablets of dipeptidyl peptidase-4 inhibitors. Hybrid molecules that combine the properties of selected incretins and other peptides are at early stages of development, and proof of concept has been shown for small non-peptide molecules to activate glucagon-like peptide-1 receptors. Additional sodium-glucose co-transporter inhibitors are progressing in development as well as possible new insulin-releasing biological agents and small-molecule inhibitors of glucagon action. Adiponectin receptor agonists, selective peroxisome proliferator-activated receptor modulators, cellular glucocorticoid inhibitors, and analogues of fibroblast growth factor 21 are being considered as potential new approaches to glucose lowering. Compounds that can enhance insulin receptor and post-receptor signalling cascades or directly promote selected pathways of glucose metabolism have suggested opportunities for future treatments. However, pharmacological interventions that are able to restore normal β-cell function and β-cell mass, normalise insulin action, and fully correct glucose homoeostasis are a distant vision.
Resumo:
The increasing prevalence, variable pathogenesis, progressive natural history, and complications of type 2 diabetes emphasise the urgent need for new treatment strategies. Longacting (eg, once weekly) agonists of the glucagon-like-peptide-1 receptor are advanced in development, and they improve prandial insulin secretion, reduce excess glucagon production, and promote satiety. Trials of inhibitors of dipeptidyl peptidase 4, which enhance the effect of endogenous incretin hormones, are also nearing completion. Novel approaches to glycaemic regulation include use of inhibitors of the sodium-glucose cotransporter 2, which increase renal glucose elimination, and inhibitors of 11ß-hydroxysteroid dehydrogenase 1, which reduce the glucocorticoid effects in liver and fat. Insulin-releasing glucokinase activators and pancreatic-G-protein-coupled fatty-acid-receptor agonists, glucagon-receptor antagonists, and metabolic inhibitors of hepatic glucose output are being assessed. Early proof of principle has been shown for compounds that enhance and partly mimic insulin action and replicate some effects of bariatric surgery.
Resumo:
The presence of obesity with type 2 diabetes increases morbidity and mortality from each condition. Excess adiposity accentuates insulin resistance and complicates the treatment of type 2 diabetes. Glucagon-like peptide 1 receptor agonists promote weight loss, whereas metformin, dipeptidyl peptidase 4 inhibitors, and a glucosidase inhibitors are typically weight neutral. The anabolic effects of increased insulin secretion and action restrict the benefits of treatment in obese patients. New treatments should ideally reduce hyperglycaemia and excess adiposity. Potential new treatments include analogues of intestinal and adipocyte hormones, inhibitors of renal glucose reabsorption and cellular glucocorticoid activation, and activators of cellular energy production.
Resumo:
Depending on age, duration of diabetes and glycaemic control, 20-40% of patients with type 2 diabetes will incur a moderate or severe deterioration of renal function. This will impact the choice of blood glucose-lowering therapy and require more frequent monitoring of both renal function and glycaemic control. Moderate renal impairment (glomerular filtration rate 30-<60 ml/min) requires consideration of dose reduction or treatment cessation for metformin, glucagon-like peptide-1 receptor agonists, some sulphonylureas and some dipeptidyl peptidase-4 inhibitors. At lower rates of glomerular filtration down to about 15 ml/min it may be appropriate to use a meglitinide, pioglitazone or certain sulphonylureas with careful consideration of dose and co-morbidities. Dipeptidyl peptidase-4 inhibitors can be used at reduced dose in patients with very low rates of glomerular filtration, and linagliptin can be used without dose reduction, and has been used in patients on dialysis. Insulin can be used at any stage of renal impairment, but the regimen and the dose must be suitably adjusted and accompanied by adequate monitoring. © The Author(s), 2012.
Resumo:
Glucagon-like peptide-1 (GLP-1) receptor agonists improve islet function and delay gastric emptying in patients with type 2 diabetes mellitus (T2DM). This meta-analysis aimed to investigate the effects of the once-daily prandial GLP-1 receptor agonist lixisenatide on postprandial plasma glucose (PPG), glucagon and insulin levels. Methods: Six randomized, placebo-controlled studies of lixisenatide 20μg once daily were included in this analysis: lixisenatide as monotherapy (GetGoal-Mono), as add-on to oral antidiabetic drugs (OADs; GetGoal-M, GetGoal-S) or in combination with basal insulin (GetGoal-L, GetGoal-Duo-1 and GetGoal-L-Asia). Change in 2-h PPG and glucose excursion were evaluated across six studies. Change in 2-h glucagon and postprandial insulin were evaluated across two studies. A meta-analysis was performed on least square (LS) mean estimates obtained from analysis of covariance (ANCOVA)-based linear regression. Results: Lixisenatide significantly reduced 2-h PPG from baseline (LS mean difference vs. placebo: -4.9mmol/l, p<0.001) and glucose excursion (LS mean difference vs. placebo: -4.5mmol/l, p<0.001). As measured in two studies, lixisenatide also reduced postprandial glucagon (LS mean difference vs. placebo: -19.0ng/l, p<0.001) and insulin (LS mean difference vs. placebo: -64.8 pmol/l, p<0.001). There was a stronger correlation between 2-h postprandial glucagon and 2-h PPG with lixisenatide than with placebo. Conclusions: Lixisenatide significantly reduced 2-h PPG and glucose excursion together with a marked reduction in postprandial glucagon and insulin; thus, lixisenatide appears to have biological effects on blood glucose that are independent of increased insulin secretion. These effects may be, in part, attributed to reduced glucagon secretion. © 2014 John Wiley and Sons Ltd.
Resumo:
Oral therapy for type 2 diabetes mellitus, when used appropriately, can safely assist patients to achieve glycaemic targets in the short to medium term. However, the progressive nature of type 2 diabetes usually requires a combination of two or more oral agents in the longer term, often as a prelude to insulin therapy. Issues of safety and tolerability, notably weight gain, often limit the optimal application of anti-diabetic drugs such as sulforylureas and thiazolidinediones. Moreover, the impact of different drugs, even within a single class, on the risk of long-term vascular complications has come under scrutiny. For example, recent publication of evidence suggesting potential detrimental effects of rosiglitazone on myocardial events generated a heated debate and led to a reduction in use of this drug. In contrast, current evidence supports the view that pioglitazone has vasculoprotective properties. Both drugs are contraindicated in patients who are at risk of heart failure. An additional recently identified safety concern is an increased risk of fractures, especially in postmenopausal women. Several new drugs with glucose-lowering efficacy that may offer certain advantages have recently become available. These include (i) injectable glucagonlike peptide-1 (GLP-1) receptor agonists and oral dipeptidyl peptidase-4 (DPP-4) inhibitors; (ii) the amylin analogue pramlintide; and (iii) selective cannabinoid receptor-1 (CB1) antagonists. GLP-1 receptor agonists, such as exenatide, stimulate nutrient-induced insulin secretion and reduce inappropriate glucagon secretion while delaying gastric emptying and reducing appetite. These agents offer a low risk of hypoglycaemia combined with sustained weight loss. The DPP-4 inhibitors sitagliptin and vildagliptin are generally weight neutral, with less marked gastrointestinal adverse effects than the GLP-1 receptor agonists. Potential benefits of GLP-1 receptor stimulation on P cell neogenesis are under investigation. Pancreatitis has been reported in exenatide-treated patients. Pramlintide, an injected peptide used in combination with insulin, can reduce insulin dose and bodyweight. The CB1 receptor antagonist rimonabant promotes weight loss and has favourable effects on aspects of the metabolic syndrome, including the hyperglycaemia of type 2 diabetes. However, in 2007 the US FDA declined approval of rimonabant, requiring more data on adverse effects, notably depression. The future of dual peroxisome proliferator-activated receptor-alpha/gamma agonists, or glitazars, is presently uncertain following concerns about their safety. In conclusion, several new classes of drugs have recently become available in some countries that offer new options for treating type 2 diabetes. Beneficial or neutral effects on bodyweight are an attractive feature of the new drugs. However, the higher cost of these agents, coupled with an absence of long-term safety and clinical outcome data, need to be taken into consideration by clinicians and healthcare organizations.
Resumo:
The structure-activity relationship optimization of the pyrazoline template 3a resulted in novel 3-oxo-1,2-diphenyl-2,3-dihydro-1H-pyrazol-4-yl)-indole carboxamides 4a-4e. These non-peptidal CCK ligands have been shown to act as potent CCK 1 ligands in a [125]I-CCK-8 receptor binding assay. The best amides (4c and 4d) of this series displayed an IC50 of 20/25 CCK 1 for the CCK 1 receptor. In a subsequent in-vivo evaluation using various behaviour pharmacological assays, an anxiolytic effect of these novel 3-oxo-1,2-diphenyl-2,3-dihydro-1H-pyrazol-4-yl)-indole carboxamides was found at high doses in the elevated plus-maze. In the despair swimming test, a model for testing antidepressants, an ED50 of 0.33/0.41 mg kg -1 was determined for amide 4c/4d and the antidepressant effect had a magnitude comparable to desimipramine. © 2006 The Authors.