883 resultados para mathematical modelling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Process variability in pollutant build-up and wash-off generates inherent uncertainty that affects the outcomes of stormwater quality models. Poor characterisation of process variability constrains the accurate accounting of the uncertainty associated with pollutant processes. This acts as a significant limitation to effective decision making in relation to stormwater pollution mitigation. The study undertaken developed three theoretical scenarios based on research findings that variations in particle size fractions <150µm and >150µm during pollutant build-up and wash-off primarily determine the variability associated with these processes. These scenarios, which combine pollutant build-up and wash-off processes that takes place on a continuous timeline, are able to explain process variability under different field conditions. Given the variability characteristics of a specific build-up or wash-off event, the theoretical scenarios help to infer the variability characteristics of the associated pollutant process that follows. Mathematical formulation of the theoretical scenarios enables the incorporation of variability characteristics of pollutant build-up and wash-off processes in stormwater quality models. The research study outcomes will contribute to the quantitative assessment of uncertainty as an integral part of the interpretation of stormwater quality modelling outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modelling fluvial processes is an effective way to reproduce basin evolution and to recreate riverbed morphology. However, due to the complexity of alluvial environments, deterministic modelling of fluvial processes is often impossible. To address the related uncertainties, we derive a stochastic fluvial process model on the basis of the convective Exner equation that uses the statistics (mean and variance) of river velocity as input parameters. These statistics allow for quantifying the uncertainty in riverbed topography, river discharge and position of the river channel. In order to couple the velocity statistics and the fluvial process model, the perturbation method is employed with a non-stationary spectral approach to develop the Exner equation as two separate equations: the first one is the mean equation, which yields the mean sediment thickness, and the second one is the perturbation equation, which yields the variance of sediment thickness. The resulting solutions offer an effective tool to characterize alluvial aquifers resulting from fluvial processes, which allows incorporating the stochasticity of the paleoflow velocity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Provision of network infrastructure to meet rising network peak demand is increasing the cost of electricity. Addressing this demand is a major imperative for Australian electricity agencies. The network peak demand model reported in this paper provides a quantified decision support tool and a means of understanding the key influences and impacts on network peak demand. An investigation of the system factors impacting residential consumers’ peak demand for electricity was undertaken in Queensland, Australia. Technical factors, such as the customers’ location, housing construction and appliances, were combined with social factors, such as household demographics, culture, trust and knowledge, and Change Management Options (CMOs) such as tariffs, price,managed supply, etc., in a conceptual ‘map’ of the system. A Bayesian network was used to quantify the model and provide insights into the major influential factors and their interactions. The model was also used to examine the reduction in network peak demand with different market-based and government interventions in various customer locations of interest and investigate the relative importance of instituting programs that build trust and knowledge through well designed customer-industry engagement activities. The Bayesian network was implemented via a spreadsheet with a tick box interface. The model combined available data from industry-specific and public sources with relevant expert opinion. The results revealed that the most effective intervention strategies involve combining particular CMOs with associated education and engagement activities. The model demonstrated the importance of designing interventions that take into account the interactions of the various elements of the socio-technical system. The options that provided the greatest impact on peak demand were Off-Peak Tariffs and Managed Supply and increases in the price of electricity. The impact in peak demand reduction differed for each of the locations and highlighted that household numbers, demographics as well as the different climates were significant factors. It presented possible network peak demand reductions which would delay any upgrade of networks, resulting in savings for Queensland utilities and ultimately for households. The use of this systems approach using Bayesian networks to assist the management of peak demand in different modelled locations in Queensland provided insights about the most important elements in the system and the intervention strategies that could be tailored to the targeted customer segments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim Determining how ecological processes vary across space is a major focus in ecology. Current methods that investigate such effects remain constrained by important limiting assumptions. Here we provide an extension to geographically weighted regression in which local regression and spatial weighting are used in combination. This method can be used to investigate non-stationarity and spatial-scale effects using any regression technique that can accommodate uneven weighting of observations, including machine learning. Innovation We extend the use of spatial weights to generalized linear models and boosted regression trees by using simulated data for which the results are known, and compare these local approaches with existing alternatives such as geographically weighted regression (GWR). The spatial weighting procedure (1) explained up to 80% deviance in simulated species richness, (2) optimized the normal distribution of model residuals when applied to generalized linear models versus GWR, and (3) detected nonlinear relationships and interactions between response variables and their predictors when applied to boosted regression trees. Predictor ranking changed with spatial scale, highlighting the scales at which different species–environment relationships need to be considered. Main conclusions GWR is useful for investigating spatially varying species–environment relationships. However, the use of local weights implemented in alternative modelling techniques can help detect nonlinear relationships and high-order interactions that were previously unassessed. Therefore, this method not only informs us how location and scale influence our perception of patterns and processes, it also offers a way to deal with different ecological interpretations that can emerge as different areas of spatial influence are considered during model fitting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focus of this paper is two-dimensional computational modelling of water flow in unsaturated soils consisting of weakly conductive disconnected inclusions embedded in a highly conductive connected matrix. When the inclusions are small, a two-scale Richards’ equation-based model has been proposed in the literature taking the form of an equation with effective parameters governing the macroscopic flow coupled with a microscopic equation, defined at each point in the macroscopic domain, governing the flow in the inclusions. This paper is devoted to a number of advances in the numerical implementation of this model. Namely, by treating the micro-scale as a two-dimensional problem, our solution approach based on a control volume finite element method can be applied to irregular inclusion geometries, and, if necessary, modified to account for additional phenomena (e.g. imposing the macroscopic gradient on the micro-scale via a linear approximation of the macroscopic variable along the microscopic boundary). This is achieved with the help of an exponential integrator for advancing the solution in time. This time integration method completely avoids generation of the Jacobian matrix of the system and hence eases the computation when solving the two-scale model in a completely coupled manner. Numerical simulations are presented for a two-dimensional infiltration problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The process of spray drying is applied in a number of contexts. One such application is the production of a synthetic rock used for storage of nuclear waste. To establish a framework for a model of the spray drying process for this application, we here develop a model describing evaporation from droplets of pure water, such that the model may be extended to account for the presence of colloid within the droplet. We develop a spherically-symmetric model and formulate continuum equations describing mass, momentum, and energy balance in both the liquid and gas phases from first principles. We establish appropriate boundary conditions at the surface of the droplet, including a generalised Clapeyron equation that accurately describes the temperature at the surface of the droplet. To account for experiment design, we introduce a simplified platinum ball and wire model into the system using a thin wire problem. The resulting system of equations is transformed in order to simplify a finite volume solution scheme. The results from numerical simulation are compared with data collected for validation, and the sensitivity of the model to variations in key parameters, and to the use of Clausius–Clapeyron and generalised Clapeyron equations, is investigated. Good agreement is found between the model and experimental data, despite the simplicity of the platinum phase model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer is the leading contributor to the disease burden in Australia. This thesis develops and applies Bayesian hierarchical models to facilitate an investigation of the spatial and temporal associations for cancer diagnosis and survival among Queenslanders. The key objectives are to document and quantify the importance of spatial inequalities, explore factors influencing these inequalities, and investigate how spatial inequalities change over time. Existing Bayesian hierarchical models are refined, new models and methods developed, and tangible benefits obtained for cancer patients in Queensland. The versatility of using Bayesian models in cancer control are clearly demonstrated through these detailed and comprehensive analyses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study uses agent based modelling to simulate the worker interactions within a workplace and to investigate how the interactions can have impact on the workplace dynamics. Two new models (Bounded Confidence with Bias model and Relative Agreement with Bias model) are built based on the theoretical foundation of two existing models. A new factor, namely bias, is added into the new models which raises several issues to be studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statistical analyses of health program participation seek to address a number of objectives compatible with the evaluation of demand for current resources. In this spirit, a spatial hierarchical model is developed for disentangling patterns in participation at the small area level, as a function of population-based demand and additional variation. For the former, a constrained gravity model is proposed to quantify factors associated with spatial choice and account for competition effects, for programs delivered by multiple clinics. The implications of gravity model misspecification within a mixed effects framework are also explored. The proposed model is applied to participation data from a no-fee mammography program in Brisbane, Australia. Attention is paid to the interpretation of various model outputs and their relevance for public health policy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We formalise and present a new generic multifaceted complex system approach for modelling complex business enterprises. Our method has a strong focus on integrating the various data types available in an enterprise which represent the diverse perspectives of various stakeholders. We explain the challenges faced and define a novel approach to converting diverse data types into usable Bayesian probability forms. The data types that can be integrated include historic data, survey data, and management planning data, expert knowledge and incomplete data. The structural complexities of the complex system modelling process, based on various decision contexts, are also explained along with a solution. This new application of complex system models as a management tool for decision making is demonstrated using a railway transport case study. The case study demonstrates how the new approach can be utilised to develop a customised decision support model for a specific enterprise. Various decision scenarios are also provided to illustrate the versatility of the decision model at different phases of enterprise operations such as planning and control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last two decades, there has been an increasing awareness of, and interest in, the use of spatial moment techniques to provide insight into a range of biological and ecological processes. Models that incorporate spatial moments can be viewed as extensions of mean-field models. These mean-field models often consist of systems of classical ordinary differential equations and partial differential equations, whose derivation, at some point, hinges on the simplifying assumption that individuals in the underlying stochastic process encounter each other at a rate that is proportional to the average abundance of individuals. This assumption has several implications, the most striking of which is that mean-field models essentially neglect any impact of the spatial structure of individuals in the system. Moment dynamics models extend traditional mean-field descriptions by accounting for the dynamics of pairs, triples and higher n-tuples of individuals. This means that moment dynamics models can, to some extent, account for how the spatial structure affects the dynamics of the system in question.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mathematical models describing the movement of multiple interacting subpopulations are relevant to many biological and ecological processes. Standard mean-field partial differential equation descriptions of these processes suffer from the limitation that they implicitly neglect to incorporate the impact of spatial correlations and clustering. To overcome this, we derive a moment dynamics description of a discrete stochastic process which describes the spreading of distinct interacting subpopulations. In particular, we motivate our model by mimicking the geometry of two typical cell biology experiments. Comparing the performance of the moment dynamics model with a traditional mean-field model confirms that the moment dynamics approach always outperforms the traditional mean-field approach. To provide more general insight we summarise the performance of the moment dynamics model and the traditional mean-field model over a wide range of parameter regimes. These results help distinguish between those situations where spatial correlation effects are sufficiently strong, such that a moment dynamics model is required, from other situations where spatial correlation effects are sufficiently weak, such that a traditional mean-field model is adequate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change and on-going water policy reforms will likely contribute to on-farm and regional structural adjustment in Australia. This paper gathers empirical evidence of farm-level structural adjustments and integrates these with a regional equilibrium model to investigate sectoral and regional impacts of climate change and recent water use policy on rice industry. We find strong evidence of adjustments to the farming system, enabled by existing diversity in on-farm production. A further loss of water with additional pressures to adopt less intensive and larger-scale farming, will however reduce the net number of farm businesses, which may affect regional rice production. The results from a regional CGE model show impacts on the regional economy over and above the direct cost of the environmental water, although a net reduction in real economic output and real income is partially offset by gains in rest of the Australia through the reallocation or resources. There is some interest within the industry and from potential new corporate entrants in the relocation of some rice production to the north. However, strong government support would be crucial to implement such relocation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scratch assays are difficult to reproduce. Here we identify a previously overlooked source of variability which could partially explain this difficulty. We analyse a suite of scratch assays in which we vary the initial degree of confluence (initial cell density). Our results indicate that the rate of re-colonisation is very sensitive to the initial density. To quantify the relative roles of cell migration and proliferation, we calibrate the solution of the Fisher–Kolmogorov model to cell density profiles to provide estimates of the cell diffusivity, D, and the cell proliferation rate, λ. This procedure indicates that the estimates of D and λ are very sensitive to the initial density. This dependence suggests that the Fisher–Kolmogorov model does not accurately represent the details of the collective cell spreading process, since this model assumes that D and λ are constants that ought to be independent of the initial density. Since higher initial cell density leads to enhanced spreading, we also calibrate the solution of the Porous–Fisher model to the data as this model assumes that the cell flux is an increasing function of the cell density. Estimates of D and λ associated with the Porous–Fisher model are less sensitive to the initial density, suggesting that the Porous–Fisher model provides a better description of the experiments.