923 resultados para mangrove forest
Resumo:
Science & Technology Basic Work Program of China: Scientific Survey of the Middle-lower Reaches of Lantsang River and the Great Shangri-La Region [2008FY110300]; National Basic Research Program of China (973 Program): Ecosystem Services and Ecological Safety of the Major Terrestrial Ecosystems of China [2009CB421106]; National Natural Science Foundation of China [30670374]; EU ; European Commission, DG Research [003874]
Resumo:
Four new (1-4) and seven known (5-11) benzaldehyde derivatives were characterized from the liquid fermentation cultures of Eurotium rubrum, an endophytic fungus that was isolated from the inner tissue of stems of the mangrove plant Hibiscus tiliaceus. The structures of these compounds were determined by extensive analysis of their spectroscopic data. Among these metabolites, compound 1, which was named as eurotirumin, possesses a new carbon skeleton with a cyclopentabenzopyran ring system.
Resumo:
Lutjanus argentimaculatus, also called mangrove red snapper, is a commercially important fish in East Asia. A proper understanding of population structure is primarily linked with the management of genetic resources in exploiting marine fisheries. Herein, seven microsatellite loci, which showed high polymorphism (observed heterozygosity per locus ranging from 0.3571 to 0.7857 and expected heterozygosity per locus ranging from 0.6236 to 0.8821), were isolated and characterized from L. argentimaculatus. Cross-species amplifications also indicate that primers designed for these loci may be useful for further studies about other closely phylogenetic species of the family Lutjanidae.
Resumo:
There is considerable interest in the isolation of potent radical scavenging compounds from natural resources to treat diseases involving oxidative stress. In this report, four new fungal metabolites including one new bisdihydroanthracenone derivative (1, eurorubrin), two new seco-anthraquinone derivatives [3, 2-O-methyl-9-dehydroxyeurotinone and 4, 2-O-methyl4-O-(alpha-D-ribofuranosyl)-9-dehydroxyeurotinone], and one new anthraquinone glycoside [6,3-O-(alpha-D-ribofuranosyl)questin], were isolated and identified from Eurotium rubrum, an endophytic fungal strain that was isolated from the inner tissue of the stem of the marine mangrove plant Hibiscus tiliaceus. In addition, three known compounds including asperflavin (2), 2-O-methyleurotinone (5), and questin (7) were also isolated and identified. Their structures were elucidated on the basis of spectroscopic analysis. All of the isolated compounds were evaluated for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity.
Resumo:
Twenty-four compounds including eight steroids (1-8), nine triterpenoids (9-16, 24), three flavonoids (20-22), and four benzenecarboxylic derivatives (17-19, 23) were isolated and identified from stems and twigs of medicinal mangrove plant Sonneratia caseolaris. The structures of the isolated compounds were determined by extensive analysis of their spectroscopic data. Among these metabolites, compounds 1, 4-20 and 22-24 were isolated and identified for the first time from S. caseolaris. In the in vitro cytotoxic assay against SMMC-7721 human hepatoma cells, compound 21 (3',4',5,7-tetrahydroxyflavone) exhibited significant activity with IC50 2.8 mu g/mL, while oleanolic acid (14), 3,3'-di-O-methyl ether ellagic acid (18), and 3,3',4-O-tri-O-methyl ether ellagic acid (19) showed weak activity. None of these compounds displayed significant antibacterial activites.
Resumo:
A new fermentative hydrogen-producing bacterium was isolated from mangrove sludge and identified as Pantoea agglomerans using light microscopic examination, Biolog test and 16S rRNA gene sequence analysis. The isolated bacterium, designated as P. agglomerans BH-18, is a new strain that has never been optimized as a potential hydrogen-producing bacterium. In this study, the culture conditions and the hydrogen-producing ability of P. agglomerans BH-18 were examined. The strain was a salt-tolerant facultative anaerobe with the initial optimum pH value at 8.0-9.0 and temperature at 30 degrees C on cell growth. During fermentation, hydrogen started to evolve when cell growth entered late-exponential phase and was mainly produced in the stationary phase. The strain was able to produce hydrogen over a wide range of initial pH from 5 to 10, with an optimum initial pH of 6. The level of hydrogen production was affected by the initial glucose concentration, and the optimum value was found to be 10 g glucose/l. The maximum hydrogen-producing yield (2246 ml/l) and overall hydrogen production rate (160 ml/l/h) were obtained at an initial glucose concentration of 10 g/l and an initial pH value of 7.2 in marine culture conditions. In particular, the level of hydrogen production was also affected by the salt concentration. Hydrogen production reached a higher level in fresh culture conditions than in marine ones. In marine conditions, hydrogen productivity was 108 ml/l/h at an initial glucose concentration of 20 g/l and pH value of 7.2, whereas, it increased by 27% in fresh conditions. In addition, this strain could produce hydrogen using glucose and many other carbon sources such as fructose, sucrose, sorbitol and so on. As a result, it is possible that P. agglomerans BH-18 is used for biohydrogen production and biological treatment of mariculture wastewater and marine organic waste. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
Resumo:
Chang-Fu Wang, Xian-Qiu Ren, and Run-Lin Xu (2010) Composition, abundance, and diversity of the Peracarida on different vegetation types in the Qi'ao-Dan'gan Island Mangrove Nature Reserve on Qi'ao Island in the Pearl River estuary, China. Zoological Studies 49(5): 608-615. Almost nothing is known about the Peracarida in the Pearl River estuary. This is the 1st report to study the composition, abundance, and diversity of the Peracarida in the Qi'ao-Dan'gan I. Mangrove Nature Reserve on Qi'ao I., in the Pearl River estuary, southern China. Bimonthly samplings were carried out in 3 representative vegetation types (mangrove arbor, emergent plants, and seaweed) for 2 yr. Using a Peterson grab, 1940 individuals (id.) were collected in total, including 11 species of 6 genera, 5 families, and 3 orders (Amphipoda, Isopoda, and Tanaidacean). Discapseudes mackiei Bamber 1997 was the dominant species with the highest density of 1,432 incl./m(2). The effect of temperature on the abundance of Peracarida was significant (p < 0.01), and the optimum temperature was 22-23 degrees C in both the mangrove arbor and seaweed. The results showed that the abundance of the Peracarida was higher in the mangrove arbor, while the diversity, especially Amphipoda diversity, was higher in the seaweed. In contrast, emergent plants provided no suitable habitats for the Peracarida. http://zoolstud.sinica.edu.tw/Journals/49.5/608.pdf
Resumo:
Three new triterpenoids with the rarely occurring nigrum skeleton, namely (20E)-22-hydroxynigrum-20-en-3-one (1), 21 beta-hydroxynigrum-22(29)-en-3-one (2), and 21 alpha-hydroxynigrum-22(29)-en-3-one (3), were isolated from the mangrove plant Hibiscus tiliaceus. Additionally, five known triterpenoids including friedelin (4),12-oleanen-3 beta-ol (5), 3 beta-hydroxy-12-oleanen-28-oic acid (6),20(29)-lupen-3 beta,28-diol (7). and cucurbita-5,23-dien-3 beta,25-diol (8) were also isolated and identified. The latter structures were elucidated by a detailed NMR and MS analyses, as well as by comparison with reported literature data.
Resumo:
Cultivation of the fungal strain Eurotium rubrum, an endophytic fungus that was isolated from the inner tissue of stems of the mangrove plant Hibiscus tiliaceus, resulted in the isolation of two new dioxopiperazine derivatives, namely, dehydrovariecolorin L (1) and dehydroechinulin (2), together with eight known dioxopiperazine compounds including variecolorin L (3), echinulin (4), isoechinulin A (5), dihydroxyisoechinulin A (6), preechinulin (7), neoechinulin A (8), neoechinulin E (9), and cryptoechinuline D (10). The structures of the isolated compounds were determined by extensive analysis of their spectroscopic data as well as by comparison with literature. Compounds 1, 2, 9, and 10 were investigated for their a,a-diphenyl-beta-picrylhydrazyl (DPPH) radical-scavenging activity. In addition, the new compounds, 1 and 2, were evaluated for their cytotoxic activity against the P-388, HL-60, and A549 cell lines.